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Abstract

Digital currencies provide a potential form of liquidity competing with bank deposits. We

introduce stable digital currency into a macro model with a financial sector in which financial

frictions generate endogenous systemic risk and instability. In the model, digital currency

is fully integrated into the financial system and depresses bank deposit spreads, particularly

during crises, which limits banks’ ability to recapitalize following losses. As a result, the

probability of the banking sector being in crisis or distressed states can grow significantly

with the introduction of digital currency. While banking-sector stability suffers, asset price

volatility decreases, and household welfare can improve significantly. Despite the potential

welfare gains, our theoretical results suggest that financial frictions may limit the potential

benefits of digital currencies. The optimal level of digital currency may be below what would

be issued in a competitive environment.
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1 Introduction

Digital currencies could become an alternative to traditional money. Private suppliers are trying to

design digital currencies with stable values that can function as reliable means of payment. Central

banks are also considering whether to issue cryptocurrency. On the one hand, many privately issued

stablecoins are far from stable in their current implementations,1 and a central bank digital currency

(CBDC) has the potential to generate fragility and runs (European Central Bank, 2020; Federal

Reserve, 2022) or widespread disintermediation as depositors move funds out of bank deposits

and into CBDCs (Fernández-Villaverde, Sanches, Schilling, and Uhlig, 2021). On the other hand,

there is the potential for a new “steady state” in which digital currencies are fully integrated into

the financial sector, competing with bank deposits as an alternative form of liquidity and providing

stable means of payment. In this case, digital currencies might affect banks’ investment activities

without leading to complete disintermediation. More broadly, there remains uncertainty about how

digital currencies, whether issued publicly or privately, would affect the stability of the traditional

financial sector.

In this paper, we consider the financial stability consequences of digital currency should it

become fully integrated into the financial sector, whether in the form of CBDC or truly stable

stablecoins. We suppose that digital currencies and bank deposits coexist, and households hold

both digital currencies and bank deposits within their portfolio of liquid claims. Accordingly, we

take as given a degree of “disintermediation” caused by digital currencies. Instead of focusing our

analysis on distintermediation or the potential for runs, we focus on financial instability caused by

systemic deleveraging, leading to fire sales, and undercapitalization of the banking sector.

Our primary contribution to this debate is a quantitative model in which banks are subject to

financial frictions regarding equity issuance, and cheap funding via deposit spreads help stabilize

the system. We consider a continuous-time stochastic general equilibrium model in which financial

frictions endogenously create inefficient instability and systemic risk, building on Brunnermeier

1Gorton et al. (2022) find empirically that stablecoins currently carry an inconvenience yield: investors require
additional returns in exchange for holding stablecoins compared to traditional risk-free assets, whereas investors are
willing to forego returns in order to hold fiat currency (i.e., fiat currency carries a convenience yield). d’Avernas et al.
(2022) show theoretically that only fiat-backed coins are truly stable.
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and Sannikov (2014). We assess the consequences of digital currency for financial stability and

welfare by investigating the impact of digital currency on the amplification of shocks, nonlinear

dynamics, and systemic risk, which are central features of the framework in Brunnermeier and

Sannikov (2014). This approach contrasts with the previous literature studying CBDCs because

we focus on financial fragility caused by low levels of bank equity and systemic deleveraging rather

than bank runs or disintermediation.

In the model, banks invest in productive capital, but due to frictions, banks’ marginal source

of funding is typically risk-free deposits because issuing equity is costly. As a result, banks invest

more when they have more equity, and capital is allocated more efficiently when banks are well-

capitalized. To this setting we add digital currencies as a substitute form of liquidity that competes

with bank deposits. We solve for the global dynamics of the economy to assess the impact of

digital currency on bank profitability and thus on bank equity growth.

The main mechanisms of the model are as follows. Digital currencies decrease the spreads on

bank deposits, thus affecting the ability of banks to rebuild equity following losses and the ex-ante

investment decisions (e.g., leverage) of banks in good times. The effect on spreads is greatest in

crises, precisely when banks are in most need of being able to recapitalize quickly. As a result,

digital currencies can have significant adverse consequences for the frequency and duration of

good and bad outcomes.

Our main positive result is that digital currency can significantly harm the stability of the bank-

ing sector: times of distress and crisis increase monotonically with the supply of digital currency,

and bank valuation decrease substantially. At the welfare-maximizing level of digital currency,

the probability of crises in our benchmark calibration doubles from 3% to 5.97%, output losses in

crises increase from 8% to 8.78%, and bank valuations decrease by 6.8%. Nonetheless, there are

some silver linings for financial markets: asset price volatility generally decreases and asset prices

increase. In terms of welfare, household welfare can increase significantly despite the decrease in

financial stability. These welfare consequences are large. In our benchmark calibration, we find

plausible welfare gains on the order of 2% in terms of consumption-equivalent. Thus, our model

suggests that there is a robust range of digital currency issuance in which the welfare-stability
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trade-off is in favor of digital currency, even when digital currency is costly to issue.

While financial frictions do not completely overturn the potential welfare gains from digital

currency, they do affect the social optimum. We find that the optimal level of digital currency is

lower with financial frictions than without. Not only that, the welfare-maximizing level of digital

currency may be less than what would be provided by profit-maximizing issuers in a competitive

market. Thus, financial frictions may provide an additional rationale for regulating stablecoins

issuance even in the best-case scenario when they are truly stable and run-proof.

Related Literature. There is a growing literature studying the impact of digital currencies on

the financial sector, especially focusing on CBDCs. One strand of the literature focuses on the

impact of CBDC on normal (non-crisis) periods (e.g., Keister and Sanches, 2021; Williamson,

2022). Another strand considers how CBDC affects fragility in the sense of affecting runs within

a Diamond and Dybvig (1983) setting, i.e., providing new incentives for depositors to withdraw

or run on banks. Notable contributions include Skeie (2021); Williamson (2021); Keister and

Monnet (2022); Ahnert et al. (2020). There is also an important emphasis on the potential for

disintermediation within the traditional banking sector (Fernández-Villaverde, Sanches, Schilling,

and Uhlig, 2021). These papers echo the concerns of policymakers: a recent report by the European

Central Bank (2020) states “in crisis situations, when savers have less confidence in the whole

banking sector, liquid assets might be shifted very rapidly from commercial bank deposits to the

digital euro,” and a report from the Federal Reserve (2022) worries that “CBDC could make runs

on financial firms more likely or more severe.”

The effect of digital currencies on fragility in the sense of runs is clearly important to under-

stand. Nonetheless, our paper takes a different approach, considering an environment without runs

in this sense. In contrast to the existing literature, our emphasis is on fragility caused by systemic

deleveraging, leading to fire sales and an undercapitalized banking sector. We consider a scenario

in which financial stability relates to the level of equity in the banking sector, which determines the

degree of intermediation. Digital currencies and bank deposits coexist, and we take as given a de-

gree of disintermediation caused by digital currencies in the sense that households hold both digital

currencies and bank deposits within their portfolio of liquid claims. Our paper broadly provides
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insight about how any substantial competition with deposits has the potential to create instability

in the banking sector, with a primary application to digital currency, which has the potential to be

one such form of competition.

Methodologically, our paper follows the stochastic continuous-time macro literature pioneered

by Brunnermeier and Sannikov (2014, 2015, 2016a) and He and Krishnamurthy (2012, 2013,

2019), who analyze the nonlinear global dynamics of economies with financial frictions, building

on seminal results from Kiyotaki and Moore (1997) and Bernanke, Gertler, and Gilchrist (1999).

Several papers have introduced money and liquidity provision within this literature. Moreira and

Savov (2017) focus on the relationship between macroeconomic instability and the transformation

of risky assets into liquid securities by shadow banks. Phelan (2016) considers the role of banks as

providers of liquidity via deposits and notes a trade off between financial stability and economic

growth because financial intermediation leads to more efficient investment. Drechsler et al. (2018)

develop an asset-pricing model in which banks hold liquidity to insure deposits against funding

risks. Di Tella (2020) studies the real effects of money through effects on risk premia and id-

iosyncratic risk sharing. Chen and Phelan (2022a) study the consequences of financial frictions for

aggregate bank equity and welfare when banks primarily provide liquidity services, and Chen and

Phelan (2022b) study the role of monetary policy to address stability concerns.2

A recent closely related paper is Burlon et al. (2022), who consider disintermediation through

deposit substitution caused by CBDC in a quantitative DSGE model calibrated to the euro area. In

their model, the financial frictions are collateral constraints facing household and firm borrowers,

who each borrow from banks that are subject to capital adequacy constraints. Similar to our paper,

they find that there are welfare gains despite bank disintermediation. In contrast to our paper,

they use a linearized model with second-order approximations for welfare from CBDC, whereas

we consider financial stability and crises in a nonlinear model and consider both publicly and

privately produced digital currency.3 Whited et al. (2022) show that CBDC need not reduce bank

lending unless frictions and synergies bind deposits and lending together. In their model, CBDC

2Additional work in the continuous-time macro-finance literature include Adrian and Boyarchenko (2012), Mag-
giori (2017), Di Tella (2017), and Van der Ghote (2019, 2021).

3For the broader issues relating to CBDC design and how CBDC might relate to deposits or other digital currencies,
see Ahnert et al. (2022a,b) who specifically highlight privacy concerns.
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has a much smaller impact on bank lending because banks can replace a large fraction of any lost

deposits with wholesale funding.

2 Model

The economy is populated by households and banks, which are owned by households. Output is

produced using a single factor of production, a Lucas tree. Bank deposits and digital currencies

earn a liquidity yield, and thus banks have an advantage for financing the tree. The financial

friction is costly equity issuance. Our model borrows from Chen and Phelan (2022a,b), which

build on Brunnermeier and Sannikov (2014) and Phelan (2016).

2.1 Technology, Environment, and Markets

Time is continuous and infinite, and aggregate productivity shocks follow a Brownian motion.

Output Output in the economy is produced by a tree with a stochastic dividend Yt . Because the

tree is the only source of output in the economy, we refer to it interchangeably as “the risky asset”

or as “capital.” The tree’s dividend Yt evolves according to equation (1),

dYt

Yt
= gy,t dt +σ dWt , (1)

where Wt is an exogenous Brownian aggregate shock, σ is the exogenous fundamental volatility,

and gy,t is the growth rate. We suppose that banks induce a higher exogenous growth rate when

holding the tree, which captures gains from intermediation, i.e., gb≥ gh with banks and households

denoted by b and h. Let ψt denote the fraction of capital held by banks in equilibrium. Then the

aggregate growth rate is

gy,t = ψtgb +(1−ψt)gh

and is therefore an endogenous combination of the exogenous growth rates.
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Asset Price and Investment Returns The risky asset trades in a perfectly competitive market

with real asset price Qt . We postulate that its law of motion takes the form

dQt

Qt
= µQ,t dt +σQ,t dWt , (2)

which will be determined endogenously in equilibrium. The return to owning the risky asset in-

cludes the dividend yield of the output produced (1/Qt) and the capital gains on the value of the

tree holdings. By Ito’s Lemma, the rate of return for agent i is given by

dri,t =

(
1

Qt
+gi +µQ,t +σσQ,t

)
dt +(σ +σQ,t)dWt . (3)

The volatility of returns on investments is σ +σQ,t , which includes fundamental risk σ and en-

dogenous price risk σQ,t .

Bonds, Deposits, and Digital Currency Bank equity shares trade in a perfectly competitive

market, where dre,t denotes the return on bank equity.

There are several markets for risk-free assets in this economy, all of which are in zero net sup-

ply: government bonds, bank deposits, and digital currency (DC). Government bonds pay the real

risk-free rate dr f ,t = r f ,tdt, determined endogenously by households’ stochastic discount factor.

Deposits and digital currency provide liquidity services in addition to safe storage and therefore

pay returns below the risk-free rate. Bank deposits pay drd,t = rd,tdt, and digital currency pays

drdc,t = rdc,tdt, both determined in equilibrium.4 Let

DSt ≡ r f ,t− rd,t , DCSt ≡ r f ,t− rdc,t

denote the spreads on bank deposits and digital currency.

We consider public and private provision of digital currency. For the purposes of our paper, the

two ways of issuing digital currency are generally equivalent. The government issues two forms

of debt, bonds and digital currency (i.e., CBDC). Let Bt and CBDCt denote the real supply of

4In equilibrium all returns will be continuous with finite paths of variation, enabling this form.
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government bonds and CBDC. For tractability, we suppose that both bonds and CBDC grow at the

rate of capital growth gy,t so that total government debt is a constant fraction of output Yt . Thus,

we can write total debt Dt = Bt +CBDCt as

Dt = qDYt .

We suppose that issuing a digital currency entails a flow intermediation cost of κ goods per unit.

The government’s budget constraint is therefore given by

Bt(r f ,t−gy,t)+CBDCt(rdc,t−gy,t +κ) = Tt , (4)

where Tt is total taxes. Because we are not interested in the fiscal consequences of a CBDC, we

suppose that taxes are collected lump-sum from households (there are no government expenditures

apart from servicing the debt). Note, however, that, due to liquidity services, CBDC will pay an

interest rate below the risk-free rate thus improving the government’s budget deficit.

We also consider private provision of digital currency. Given the scope of this paper, we only

consider truly stable digital currencies: all digital currency must be completely backed by gov-

ernment assets (d’Avernas et al., 2022). We therefore assume a firm (technology) that holds gov-

ernment bonds, earning dr f ,t , to issue digital currency paying drdc,t , and pays the cost κ per unit.

Thus, the flow profits Tp,t from issuing DCt units of digital currency are

DCt(DCSt−κ) = Tp,t ,

It is instructive to rewrite the government budget constraint as follows:

Bt(r f ,t−gy,t)+CBDCt(r f ,t−gy,t)−CBDCt(r f ,t− rdc,t−κ) = Tt ,

Dt(r f ,t−gy,t)−CBDCt(DCSt−κ) = Tt ,

Note that the term CBDCt(DCSt−κ) is precisely the flow profits of privately issuing CBDCt units

of digital currency backed by government bonds. Publicly issued digital currency is implicitly
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backed by government bonds. For a given level of total debt Dt , issuing CBDC instead of bonds

simply changes the composition of the government balance sheet. In reality, a CBDC would likely

be issued by a central bank that backs the digital currency with holdings of government debt.

Hence, equation (4) is the consolidated budget constraint for the government.

Going forward we do not specify whether digital currency is publicly or privately issued; we

simply let DCt denote the total supply of digital currency. Later we consider the private incentives

to issue digital currency. Let m denote the fraction of government liabilities used to back digital

currency (publicly or privately). Then we have DCt = mqDYt and the total intermediation cost per

unit of Yt is ι ≡ κmqD. Our main question of interest is how m affects equilibrium.

In sum, bank deposits are issued by banks, which invest in the tree, and thus deposits are

backed by real (risky) investments. Digital currency, in contrast, is backed by risk-free government

liabilities, which are ultimately backed by taxes, but issuing digital currency entails a cost κ .

2.2 Households, Banks, and Portfolio Choice

There is a continuum of risk-averse households denoted by h ∈ [0,1] with initial wealth wh,0 and a

continuum of banks, denoted by b ∈ [0,1], with initial book value (“equity”) nb,0.

Households and Their Portfolio Choice Households have log utility over consumption and

“liquidity-in-the-utility-function” over liquidity services `. Lifetime utility Vt is given by

Vt =Et

[∫
∞

t
e−r(τ−t) (log(ch,τ)+β log

(
`h,τ
))

dτ

]
, (5)

where r is the discount rate, ch,τ is flow consumption, `h,τ is liquidity services, and β is a preference

parameter. Let v(`)≡ β log(`) denote liquidity utility for later use. Liquidity services are derived

from holding bank deposits depoh,t and digital currency dccyh,t according to

`h,t =

((
depoh,t

wh,t

) ε−1
ε

+δ

(
dccyh,t

wh,t

) ε−1
ε

) ε

ε−1

.
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The parameter ε is the elasticity of substitution between bank deposits and digital currency, and

δ is a preference parameter determining the relative attractiveness of the two types of liquidity.

Liquidity services are scaled by wealth to preserve homogeneity. A preference for liquidity arises

in many models. Because the focus of our paper is how digital currencies affect financial stability

and not on the microfoundations of the value of money, we model the value of bank deposits

directly in the utility function for convenience, in essence taking as given the microfoundations

for the preference for liquidity (see Diamond and Dybvig (1983), Gorton and Pennacchi (1990),

Lagos and Wright (2005), and Gali (2008)).

Let xt = (xy,t ,x f ,t ,xd,t ,xdc,t ,xe,t) be household’s portfolio weight on capital, risk-free bonds,

deposits, digital currency, and bank equity respectively. Let drt = (dry,t ,dr f ,t ,drd,t ,drdc,t ,dre,t) be

the vector of returns. Formally, households solve the problem

max
xt≥0,ch,t

Et

[∫
∞

t
e−r(τ−t) (log(ch,τ)+β log

(
`h,τ
))

dτ

]
,

subject to

dwh,t

wh,t
= xt ·drt +

(
Th,t−

ch,t

wh,t

)
dt, (6)

`h,t =
(
(xd,t)

ε−1
ε +δ (xdc,t)

ε−1
ε

) ε

ε−1
, (7)

wh,t , xy,t ≥ 0, (8)

xy,t + x f ,t + xd,t + xdc,t + xe,t = 1, (9)

where Th,t denotes all transfers received by households normalized by their net worth. Agents

cannot short capital xy,t ≥ 0. Equation (6) characterizes the evolution of households’ total wealth.

Transfers include dividends from banks and any payouts (taxes) from the government. Let the

evolution of ch,t follow the finite diffusion

dch,t

ch,t
= µch,t dt +σch,t dWt .

Let σe,t denote the volatility of bank equity returns. Proposition 1 characterizes households’ opti-
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mal decisions.

Proposition 1. Households choose xt and ch,t such that

(i) ch,t = rwh,t ,

(ii) DSt = rv′(`h,t)
∂`

∂xd,t
,

(iii) DCSt = rv′(`h,t)
∂`

∂xdc,t
,

(iv) E[dre,t ]− r f ,t = σch,tσe,t ,

(v) E[drh,t ]− r f ,t ≤ σch,t(σ +σQ,t), with equality if and only if xy,t > 0,

where DSt and DCSt are the deposit spread and the digital currency spread, respectively.

Since banks are shareholder-maximizing firms rather than separate agents, households internal-

ize the value of future bank dividends in their consumption policy. Therefore, households consume

a fraction r of their total wealth and hold positive quantities of capital if the expected excess re-

turns equal the covariance of their consumption with returns. The spreads on deposits and digital

currencies relative to the risk-free rate are determined by the marginal utility of liquidity v′(`).

Banks and Their Portfolio Choice Banks invest in capital and issue deposits. Banks are owned

by households, who choose dividend payouts, the level of deposits, the level of liquid reserves, and

the portfolio weight on capital used by banks. Because of un-modeled financial frictions, banks

are subject to two constraints. First, it is costly for banks to issue equity; raising one unit of equity

costs 1+ γ units (i.e., γ is the marginal issuance cost). Second, the value of banks’ assets minus

liabilities nb,t cannot become negative (bankruptcy).5

Banks’ maximize the present value of dividends discounted according to the households’ dis-

count factor, subject to their constraints. Dividends are discounted by households’ stochastic dis-

count factor ξt (SDF). Since households have log utility, the stochastic discount factor is ξt =

e−rtc−1
h,t . Due to banks’ productivity advantage and ability to issue deposits, banks will issue de-

posits to hold capital, but to avoid bankruptcy banks will never finance their portfolio with only

deposits.

5Acharya et al. (2011) provide empirical support that bank equity is “sticky”: during the financial crisis, banks
raised capital in the form of debt, not common equity. Adrian and Shin (2010, 2014) provide evidence that the
predetermined balance sheet variable for banks is equity, not assets.
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We interpret banks in our model as representing financial intermediaries beyond simply deposit-

taking commercial banks but also capturing other bank-like financial intermediaries whose liabil-

ities provide money-like services. Hence, the “banking sector” in our model is meant to capture

this portion of the financial sector as a whole. Empirically, He, Kelly, and Manela (2017) find

that the main buyers of asset sales from investment banks and hedge funds are commercial banks.

In our model, we would interpret such trades as trades between banks, not between banks and

households. Importantly, because we are interested in how the provision of digital currency would

affect financial stability, we suppose that banks cannot issue digital currency backed by govern-

ment bonds; the bank technology allows them to use real assets to issue deposits. We will return

to this issue later.

Let xb,t denote the fraction of equity nb,t held in capital. Formally, banks solve the problem

max
xb,τ≥0,dζb,τ

Ut = Et

[∫
∞

t

ξτ

ξt
dζb,τ

]
,

subject to the equity issuance friction and two constraints on the evolution of their (book) equity

dnb,t

nb,t
= drd,t + xb,t

(
drb,t−drd,t

)
− dζt

nb,t
−Tb,t dt, (10)

nb,t , xb,t ≥ 0. (11)

Banks pay interest on their deposits, earn a return from their capital holdings, and pay dividends

at rate dζb,t . They also pay transfers Tb,t per unit equity, which we use primarily as a modeling

device to calibrate the model.

By homogeneity and price-taking, the maximized value of a bank with equity nb,t can be written

θtnb,t ≡ max
{xb,τ≥0,dζb,τ}

Et

[∫
∞

t

ξτ

ξt
dζb,τ

]
. (12)

The marginal value of equity θt equals 1 plus the multiplier on the equity-issuance constraint

and reflects the aggregate condition of the financial sector. Proposition 2 characterizes banks’

optimality conditions, and in particular describes the equilibrium diffusion for θt .
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Proposition 2. Assume θt follows the finite diffusion

dθt

θt
= µθ ,t dt +σθ ,t dWt , (13)

with σθ ,t ≤ 0. Then θtnt represents the maximal future expected payoff that a bank with book value

nt can attain, and {xb,t ,dζt} is optimal if and only if

(i) θt ∈ [1,1+ γ] ∀t,

(ii) dζt > 0 only when θt = 1, dζt < 0 only when θt = 1+ γ , and dζt = 0 otherwise,

(iii) µθ ,t = DSt +σch,tσθ ,t +Tb,t ,

(iv) E[drb,t ]− rd,t ≤ (σch,t−σθ ,t)(σ +σQ,t), with strict equality when xb,t > 0,

(v) The transversality condition E[ξtθtnt ]→ 0 holds under {xb,t ,dζt}.

Moreover, bank shares are priced such that E[dre,t ] = µθ ,t +µnb,t +σθ ,tσnb,t and σe,t =σθ ,t +σnb,t .

Banks will not pay dividends when θt ≥ 1; θt can never be less than one because banks can

always pay out the full value of equity, guaranteeing a value of at least nb,t . Banks will raise equity

when θt = 1+ γ; θt can never be great than 1+ γ because banks can always immediately raise

equity and pay a dividend. Banks demand a risk premium that is higher than households’ because

although banks discount dividends using the household SDF, banks are also concerned about their

solvency due to costly equity issuance.

2.3 Equilibrium

A competitive equilibrium is characterized by the market price for the risky asset, together with

portfolio allocations and consumption decisions such that given prices, agents optimize and mar-

kets clear. Due to equity issuance frictions, banks’ decisions depend on their level of equity, and so

equilibrium depends on banks’ equity levels and monetary policy has scope to affect equilibrium.

Equilibrium Dynamics We solve for the global equilibrium dynamics using the methods in

Brunnermeier and Sannikov (2014). Define Nb,t =
∫

nb,t db as aggregate bank equity. Since the

tree dividend grows geometrically and the bank problem is homogeneous, the equilibrium state
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variable of interest is aggregate bank equity as a fraction of the total value of the tree:

ηt ≡
Nb,t

QtYt
.

Equilibrium consists of a law of motion for ηt and asset allocations and prices as functions of η .

The asset prices are Q(η),θ(η), and the flow allocation is the fraction of capital held by banks

ψ(η); we suppress time subscripts to reduce notation unless necessary for clarity. We derive the

evolution of ηt using Ito’s Lemma and the equations for returns and budget constraints.

Lemma 1. The equilibrium law of motion of ηt will be endogenously given as

dηt

ηt
= µη ,t dt +ση ,t dWt +dΞt , (14)

where dΞt is an impulse variable creating a regulated diffusion. Furthermore,

µη ,t =

(
ψt

ηt
−1
)(

(σch,t−σθ ,t)− (σ +σQ,t)
)
(σ +σQ,t)+

1
Qt
−Tb,t +(1−ψt)(gb−gh),

ση ,t =
(ψt−ηt)

ηt
(σ +σQ,t), dΞt =

dζt

Nb,t
,

where dζt =
∫

dζb,tdb and ψt =
1
Yt

∫
xb,tnb,tdb is the fraction of the tree held by banks.

Equilibrium Consumption and Asset pricing Output in equilibrium is the tree dividend net of

intermediation costs (ι ≡ κmqD) from digital currency. Aggregate consumption is given by

Ct = (1− ι)Yt ,

which means that consumption growth is µch,t = gy,t and consumption volatility is σch,t = σ .6 As

a result, we can write the risk-free rate as (see Lemma 2)

r f ,t = r+gy,t−σ
2.

6Constant consumption volatility makes the model computationally tractable and is why we consider a constant ι ,
i.e., a fixed m.
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Households hold wealth in capital, bank equity, and bank deposits, which in the aggregate are

(1−ψ)QY , θNb, and ψQY −Nb. Households hold government liabilities, which equal the present

value of future taxes to pay the returns on those assets together with future issuance. However, the

present value of future taxes also includes the cost of intermediating digital currency, which is a

flow cost of ιYt .7 Discounted using households’ SDF, the present value of this flow per unit of Y is

ι

r f −g+σ2 =
ι

r
.

Thus, total household wealth satisfies

Wh = Q(1+(θ −1)η)Y − ι

r
Y =

(
Q(1+(θ −1)η)− ι

r

)
Y,

Market clearing for consumption is rWh = (1− ι)Y , and so Wh =
1−ι

r Y , hence

Q(η) =
1

r(1+(θ(η)−1)η)
. (15)

The aggregate value of deposits and digital currency as a fraction of Yt are

Depot = (ψt−ηt)Qt , DCt = mqD, Lt =

(
((ψt−ηt)Qt)

ε−1
ε +δ

(
mqD) ε−1

ε

) ε

ε−1

,

In equilibrium, the shares of household wealth held in deposits and digital currency are

xd,t =
r(ψt−ηt)Qt

1− ι
, xdc,t =

rmqD

1− ι
, `t =

r
1− ι

Lt ,

and the spreads on deposits and digital currency are

DSt = r
β

`t

(
`t

xd,t

) 1
ε

, DCSt = r
β

`t
δ

(
`t

xdc,t

) 1
ε

.

7In the case of private provision of digital currency, this would be included in transfers to firms.
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Note that spreads are decreasing in liquidity supply ` generally, and each spread decreases in the

specific liability, i.e., DCSt decreases with xdc,t and therefore with m.

To characterize the equilibrium asset pricing conditions, we first define households’ required

risk premium and banks’ solvency risk premium as

HPt ≡ σ(σ +σQ,t), SPt ≡−σθ ,t(σ +σQ,t).

The solvency risk premium SPt represents the portion of banks’ required risk premium (or instan-

taneous level of risk aversion) caused by costly equity issuance and solvency concerns. Household

investment in capital implies

E[drh,t ]− r f ,t ≤ HPt , (16)

which holds with equality whenever households invest in the tree. Banks’ portfolio choice implies

E[drb,t ]− r f ,t = HPt +SPt−DSt . (17)

Relative to households, banks earn extra returns of at least (gb− gh) +DSt − SPt : they have a

productivity advantage gb−gh and a funding advantage DSt but bear the additional risk SPt due to

financial frictions. Differencing (17) and (16) yields the equilibrium asset pricing condition:

gb−gh +DSt ≥ SPt , (18)

which binds whenever households hold a positive quantity of the tree.

Solving the ODE While there are two dynamic valuation variables (Q and θ ), it is sufficient

to solve for the dynamics of θ as a function of η since Q is a function of θ (equation (15)).

We solve for equilibrium by converting the equilibrium conditions into a system of differential

equations (“ODE”) in θ . Given θ(η),θ ′(η), we can get equilibrium returns and allocations to get

θ ′′(η). Equation (15) allows us to solve for Q(η) and Q′(η). We solve the ODE using appropriate
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boundary conditions.

Proposition 3 (Equilibrium). The equilibrium domain of the functions Q(η),θ(η), and ψ(η) is an

interval [η ,η ]. The function Q(η) is increasing, θ(η) is decreasing, and the following boundary

conditions hold: (i) θ(η) = 1; (ii) θ(η) = 1+γ; (iii) θ ′(η)η +θ(η) = 1; (iv) θ ′(η)η +θ(η) = 1.

Over [η ,η ], θt ≥ 1 and dζt = 0. At η , dζt > 0, and at η , dζt < 0, creating regulated barriers for

the process ηt .

The first two boundary conditions reflect optimal policy for dividends/equity issuance. The

last two conditions are smooth pasting conditions implying Q′(η) = 0 and Q′(η) = 0. Note that

combining the conditions at η implies that θ ′(η) = 0. For high levels of η , banks can hold the

entire capital stock. The evolution of η induces a stationary density (PDF) f (η) with CDF F(η);

the density f (η) solves a Kolmogorov-Forward equation.

If the price function and marginal value of bank equity are twice-continuously differentiable,

then equations (2) and (13) are functions of η :

dQt

Qt
= µQ(ηt)dt +σQ(ηt)dWt ,

dθt

θt
= µθ (ηt)dt +σθ (ηt)dWt , (19)

where the drift and variance terms are determined by the derivatives of Q(η) and θ(η). (For the

remainder of the paper, the dependence on the state-variable ηt is suppressed for notational ease.)

Financial Stability Financial frictions generate systemic risk because outcomes depend on the

evolution of bank equity ηt . Accordingly, the behavior of ηt determines the stability of the system

(i.e., financial stability). The fundamental problem caused by financial frictions is the inability of

banks to always hold the entire capital stock and issue deposits. Households are worse-off when

fire sales are frequent and deep because output growth and liquidity services fall during fire sales.

Our measures of stability directly quantify this problem. There are a number of different variables

that capture financial stability in the model.

To start, it is useful to divide the state space into three regions and label them. We define a

boom as when banks hold the entire capital stock. The economy is in good times during a boom.

We define distress as when banks are so constrained that they have to sell capital at fire-sale prices
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to households (i.e., ψ < 100%). We define a crisis as when households hold at least 50% of the

capital stock (ψ < 50%), indicating severe misallocation due to fire sales. Thus, the economy is in

bad times when it is in distress or a crisis. The stability of the economy can be measured by the

long-run probability the economy is not in distress or the long-run probability the economy is not

in crisis.8

Additional measures of financial stability also include µη and ση . The drift µη captures the

speed with which banks recover equity following losses (higher is more stable), and the systemic

volatility ση captures how much the financial sector amplifies fundamental shocks (lower is more

stable). Together these terms determine the stationary distribution f (η) through the Kolmogorov-

Forward equation, which determines the probabilities of crises and distress. Finally, asset price

volatility σQ is a measure of endogenous risk in financial markets that is related to but distinct

from banking-sector stability per se.

Private Issuance of Digital Currency We solve the model for a given supply m of digital cur-

rency without concern for what entity issued it or whether it is profitable to do so. Nonetheless, it

is constructive to consider what supply of digital currency would occur in equilibrium in a compet-

itive market of privately issued digital currency. To maintain tractability, we suppose that potential

digital currency issuers make a once-and-for-all decision to issue µ units of currency per unit of

Yt , automatically scaling issuance with output. We then determine the level of digital currency

consistent with equilibrium.

Let J denote the value of issuing digital currency. The flow payoff to issuing currency is

(DCS(η)−κ)µY . Discounted by the household SDF, we divide by consumption, which yields a

discounted flow payoff of z(η)≡ (DCS(η)−κ) µ

1−ι
, where µ

1−ι
is a constant and Y drops out. The

8He and Krishnamurthy (2019) use a similar measure of stability. They define the threshold for financial distress
as the equity level at the 33rd percentile based on the stationary distribution, and they define a crisis as when a capital
constraint binds for financial intermediaries. In our model, the equivalent notion of a binding capital constraint is
precisely the sale of capital by banks because low bank equity restricts their ability to hold capital. However, because
the output losses are relatively modest when households hold a small share of capital, we choose to reserve the label
of “crisis” for when households hold at least 50% of the capital stock.
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value J therefore satisfies the HJB

rJ(η) = z(η)+(ηµη)Jη +
1
2
(ηση)

2Jηη .

The current value J clearly depends on the current state η . We therefore make a second assumption

that potential issuers do not know η precisely but make an ex-ante decision based on a “timeless”

perspective on the initial condition η : the initial condition is not known, but they take expecta-

tions according to the stationary distribution. The stationary density f (η) determines the ex-ante

distribution of initial conditions (capitalization of the financial sector) and agents then compute

E[J(η)] using the stationary distribution occurring in equilibrium. Thus, issuers will enter when-

ever E[J(η)] > 0. Recall that DCSt is decreasing in m and so when E[J(η)] > 0 digital currency

issuance will increase, driving down spreads. Thus, we say that the competitive equilibrium level

of digital currency is the m̂ that satisfies E[J(η)] = 0.

2.4 Welfare and Efficiency

Because banks are owned by households and are not competing agents, the model aggregates up

to a representative household. Aggregate welfare can be written

Vt = Eτ

[∫
∞

t
e−r(τ−t) (log((1− ι)Yτ)+β log(`τ)) dτ

]
, (20)

where consumption is Ct = (1− ι)Yt . Because households have log utility, we can write their value

function as

Vt =
log(Wh,t)

r
+Ht ,

where Ht is a wealth-independent term. Because total household wealth satisfies Wh =
1−ι

r Y , the

value function can be re-written as a function of η and Y :

V (η ,Y ) =
log(Y )

r
+H(η)+

A
r
, (21)
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where A is a constant defined by parameters. The function V (η ,Y ) satisfies the HJB

rV (η ,Y ) = log(1− ι)+ log(Y )+β log(`(η))

+(ηµη)Vη +
(σηη)2

2
Vηη +gyYVY +

(Y σ)2

2
VYY .

From (21), VY = 1
rY and VYY =− 1

rY 2 . Plugging in and collecting terms, this simplifies to

log(Y )+ rH(η)+A = log(1− ι)+ log(Y )+β log(`(η))

+(ηµη)Vη +
(σηη)2

2
Vηη +

1
r

gy(η)− σ2

2r
,

and hence

rH(η) = β log(`(η))+
1
r

gy(η)+H ′(η)ηµη +
(σηη)2

2
H ′′(η), (22)

A = log(1− ι)− σ2

2r
.

Equation (22) clarifies the source of welfare variations in the economy. Welfare varies with η

because the growth rate of capital depends on banks’ asset holdings and because liquidity services

depend on banks’ provision of deposits. The function H(η) is therefore the expected discounted

value of the convenience yield from liquidity and the economy growth rate. We can translate

welfare consequences into consumption-equivalent values. Consider allocations 0 and 1 that yield

welfare values V0 and V1. Then the consumption-equivalent of moving from allocation 0 to 1 is

CE = er(V1−V0)−1.

Losses incorporate the decreased growth consequences from capital misallocation (when ψ < 1)

and also the consequences of liquidity underprovision.

First-Best It is instructive to consider how financial frictions affect welfare in equilibrium, and

how digital currency operates in the first-best. It is easy to characterize the first-best equilibrium.
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When banks can freely issue equity, then θ = 1. Furthermore, banks fund themselves entirely with

deposits because there is no risk of bankruptcy, and banks hold the entirety of the tree. With finan-

cial frictions, banks use equity as a buffer against bankruptcy, which decreases liquidity provision.

Proposition 4 (First-Best). In the absence of financial frictions (free equity issuance), the first-best

equilibrium satisfies ψFB = 1 and QFB = 1
r . Furthermore welfare satisfies

rVFB = log(1− ι)+β log(`FB)+
gb

r
− σ2

2r
+ log(Y ),

where `FB is the CES aggregator over xd,FB = rQFB
1−ι

= 1
1−ι

and xdc,FB = rmqD

1−ι
.

Welfare in the first-best depends on the level of digital currency. Higher m decreases output via

ι ≡ mκqD. The effect on liquidity is more subtle: increasing m increases digital currency directly

but also increases the fraction of wealth held in deposits because overall wealth decreases. Denote

the optimal level of digital currency in the first-best by m∗FB.

Proposition 5. In the first-best, a positive level digital currency is optimal (m∗FB > 0) whenever

ε < ∞. For an interior solution, m∗FB satisfies

κ(1−β ) = DCSFB(m∗FB),

where DCSFB(m∗FB) is the digital currency spread in the first-best equilibrium with supply m∗FB of

digital currency. Hence m∗FB > m̂FB: the socially-optimal level exceeds what would be issued by

private competitive markets.

The planner internalizes that the fraction of wealth held in deposits affects the equilibrium/aggregate

level of liquidity services. The planner optimally issues more DC at the expense of lower output

because it also decreases household wealth (via ι), which raises liquidity services As a result, the

socially-optimal level of digital currency exceeds what would be produced privately (m̂FB satisfies

κ = DCS(m̂FB)). Additionally, if ε < ∞, then m = 0 is never optimal because the digital currency

spread at m = 0 is infinite (recall ∂`
∂xdc

= δ

(
`

xdc

) 1
ε , which is infinite if xdc = 0). For κ sufficiently

low, the optimal could be m∗FB = 1 (certainly the case when κ = 0).
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3 Calibration

This section discusses the benchmark calibration for the model parameters. We calibrate the model

in the absence of digital currency (m = 0). Our quantitative results then consider the consequences

of introducing digital currency for financial stability and welfare.

Our calibration strategy intentionally gives banks a critical role in the allocation of capital. This

decision actively reflects the concerns among economists and policymakers that digital currency

have the potential to lead to significant disintermediation of the banking sector, resulting in inef-

ficient allocation of capital. Disintermediation matters to the extent that banks are important for

capital allocation. In this calibration, output growth suffers significantly when households hold the

tree (i.e., when there is less intermediation) and the expected output losses from crises are large.

Nonetheless, there are good arguments to make for an alternative calibration that does not a

priori give banks such a prominent investment role. Appendix C presents an alternative calibration

strategy in which banks do not have a productivity advantage (gb = gh) and deposit spreads are

much lower, corresponding more to the convenience yields seen in short-term funding markets

rather than bank deposits. Perhaps surprisingly, even though in that calibration banks are much

less important for liquidity provision and are not at all important for the capital allocation, the

overall results of our paper continue to hold in that very different calibration.

Parameters Table 1 reports our calibration for the parameters in the baseline model and Table

2 reports the empirical moments we target. Several parameters are disciplined by the existing

empirical literature, while the remaining parameters are calibrated by jointly targeting empirical

moments from U.S. data. We target 5 empirical moments, which are common targets in the litera-

ture: probability of crises, average bank leverage, average deposit spreads, average Sharpe ratio for

banks, and average output loss from a crisis. The remaining parameters do not affect equilibrium

when there is no digital currency, so we leave their discussion until later.

A discount rate of r = 2% and an annualized growth rate of gb = 2% are standard values in

the literature (see Drechsler et al., 2018; He and Krishnamurthy, 2019). Average GDP growth

volatility is 2.2% over the period 1950-2019. We use a slightly higher value in order to hit the
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Table 1: Baseline model parameters, calibrated according to the existing literature or by matching
empirical moments for U.S. data.

Description Parameter Value
Discount Rate r 2%
Typical Growth Rate gb 2%
Fundamental Volatility σ 2.25%
Liquidity Preference β 0.3672
Household Growth gh 0.3%
Equity Issuance Cost γ 100
Bank Transfers Tb 14%

moments in the data; our choice of 2.25% is similar to values used in the literature (Drechsler et al.

(2018) calibrate to 2% and He and Krishnamurthy (2019) use 3%).

We calibrate β to match average deposit spreads. Drechsler et al. (2017) calculate average

deposit spreads of 108 basis points. Begenau and Landvoigt (2021) calculate a market leverage

ratio of 10 for banks over the period 1999-2019. Following He and Krishnamurthy (2019), we

target a 3% long-run probability of crisis, which we define as whenever ψ < 50% (Chen and

Phelan, 2022b). He, Kelly, and Manela (2017) estimate an average Sharpe ratio of 48%, and

Jordà, Schularick, and Taylor (2013) estimate average output losses of 8% in crises. Our average

Sharpe ratio is close to He et al. (2017)’s empirical estimate as well as He and Krishnamurthy

(2019)’s calibration, which yields a Sharpe of 45%. To calculate expected output losses in a crisis,

we simulate our model over five years starting from a crisis (when ψ = 50%) and compare total

output to what would have occurred if the economy had remained at the stochastic steady state.

It’s worth understanding how the remaining parameters (gh, γ , and Tb) help us match the em-

pirical targets. In the absence of financial frictions, banks would hold the entire tree, and leverage

and average returns would be determined by fundamental risk σ and banks’ funding advantage de-

termined by the deposit spread. Generating empirically realistic output losses in a crisis requires a

relatively large growth discount when household however the tree. However, a low gh also implies

large excess returns for banks when households hold the asset. This creates two challenges for

the calibration. First, high returns provide incentives for banks to hold the asset rather than sell to
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Table 2: Targeted empirical moments. Averages of variables are computed by integrating the
moment of interest with respect to the stationary density.

Empirical Moment Data Model

Average Deposit Rate 108 bps 108.6 bps
Average Bank Leverage 10 10.11
Prob. of Crisis (ψ < 50%) 3% 2.99%
Average Sharpe Ratio 48% 47.26%
Output Loss in Crisis 8% 8.04%

households, which limits fire sales. Thus, generating crises requires significant financial frictions

(high issuance costs), otherwise following losses banks will simply hold assets and issue equity

(generating crises requires the reverse). Second, high returns imply that banks rebuild equity very

quickly, so the system is very stable. Achieving high average levels of leverage and high average

Sharpe ratios require large bank transfers Tb.9

The model does a good job of matching the aggregate empirical moments, but the calibrated

values of issuance costs and bank transfers strikes us as implausibly large. Nonetheless, the model

is somewhat stylized and so these parameters are likely capturing unmodeled features.

Model Dynamics Figure 1 displays equilibrium prices, allocations, and dynamics for the cali-

brated model. When banks are well-capitalized, they own the entire capital stock, and asset prices

are high. In this region, asset price volatility is nearly zero, and fundamental risk explains the ma-

jority of the volatility in η . As η decreases and banks become unwilling to hold the entire capital

stock, fire sales depress asset prices, and volatility spikes. The kink in each plot occurs at η , the

threshold for fire sales. Bank leverage is a decreasing function of η : losses induce asset sales,

but because banks use leverage any losses from their assets have multiplied consequences for their

9These outcomes are examples of the intermediation paradox pointed out by Phelan (2016). Although productivity
losses create adverse feedback between fire sales and output in bad times, the economy is counterintuitively more
stable due to general equilibrium effects. Large productivity losses are stabilizing because in equilibrium they raise
the expected returns earned by banks, which help banks recapitalize faster, promoting long-run stability. Without this
endogenous “hedge” when bank equity is low, banks would deleverage through fire sales sooner, making financial
crises more likely. All else equal, fire sales become less probable in equilibrium when gh is lower.
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Figure 1: Equilibrium prices, allocations, evolutions, and stationary density in baseline economy.
In each panel, the horizontal axis is the state variable η , which is the ratio of banks’ book equity
to the total value of capital.
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equity, which is why leverage rises following losses. When η approaches zero, the economy is

less volatile because banks are too small to have sizable aggregate impacts.

In the model, deposit spreads move mechanically with total debt and do not reflect potential

concerns about bank solvency (all bank deposits are risk-free). In times of crisis, bank deposit

rates decline dramatically because deposit spreads increase (because deposit issuance is low).

While this prediction about spreads is counterfactual, it captures the important real-world dynamic

that deposits tend to flow into banks during crises, providing banks with a stable funding source

during crises. In the same way, the increase in deposit spreads in crises provides an important

stabilizing force for banks. Figure 2 illustrates. Panel (a) plots deposit spreads and panel (b)

plots the percent system drift µη (recall that the system drift plotted above is ηµη ). For low η ,

funding markets provide an automatically stabilizing force because banks can more cheaply fund

their balance sheet, which allows them to recapitalize more quickly (hence a high µη ).
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Figure 2: Deposit spreads and financial stability.

Welfare and Bank Values Household welfare depends on the initial condition η , as illustrated

in Figure 3. Thus, the welfare consequence of digital currency may vary with the initial condition.

As we did with private issuance of digital currency, in our later analysis we will take a “timeless”

perspective on the initial condition η : the initial condition is not known, but we take compute

E[V (η)] using the stationary distribution occurring in equilibrium.
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Figure 3: Welfare and bank valuations in the baseline model

Figure 3 also plots the aggregate value of bank equity, which also varies with η . While house-

holds do not care about bank equity per se—welfare depends on total wealth, not necessarily the

composition of wealth, and households ultimately derive utility from consumption and liquidity

flows, not bank valuations—the effects of digital currency on bank valuations are an important

variable to note for reasons of political economy. As we show below, digital currency can substan-

tially improve household welfare while having very negative consequences for bank valuations.

This creates misaligned incentives between the banks and the households who own the banks. The

financial sector could rationally oppose digital currencies while digital currencies could be welfare-

improving. As we do for welfare, going forward we will consider the average bank valuation.

Digital Currency Parameters There are four remaining parameters that we need to calibrate to

determine the consequences of digital currency issuance in equilibrium. Table 3 lists the bench-

mark values used for parameters that determine the consequences of adding digital currency. We

calibrate government debt by targeting federal debt as a fraction of total liquidity provision. This

parameter determines the potential supply of digital currency that can be issued. In the model,

private debt per unit of Y is Q(ψ −η), which we proxy using M2, which includes bank deposits

and money market funds. The ratio of government debt to M2 is 1.4. The baseline model with

m = 0 produces an average of 1.4.
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Table 3: Model parameters determining liquidity value of digital currency.

Description Parameter Value
Government debt supply qD 47.5
Elasticity of substitution ε 5.3
Currency preference δ 1
Intermediation cost κ 100bps

There are three key parameters related to digital currency that are important for our results

but which we are uncomfortable definitively determining. The first two parameters determine the

preference for digital currency relative to bank deposits: the elasticity of substitution ε and the

relative preference δ . One sensible benchmark for ε is the elasticity between cash and deposits,

which Drechsler et al. (2017) estimate as 5.3. We set this as our benchmark but also consider a

higher elasticity of 53 as well. The results with ε = 53 very closely approximate the case when

DC and deposits are perfect substitutes (i.e., ε = ∞). Since the (perhaps yet to be determined)

particular technologies for CBDC and stablecoins determine the parameter δ , we set δ = 1 as a

prior (liquidity comparable to deposits) and do robustness analysis.10

The third parameter of interest is the cost κ of issuing a digital currency. This cost is important

for the normative questions of welfare. As a benchmark, we set κ = 100bps so that the cost is

roughly equal to the average deposit spread (we target 108bps for average deposit spreads).

In the results that follow, we consider the robustness of our results by varying these three

parameters.

4 Quantitative Results: Stability and Welfare

Our main quantitative results concern how the supply of digital currency—a source of liquidity

services that competes with bank deposits—affects financial stability and household welfare. Ap-

pendix C presents an alternative calibration strategy with lower deposit spreads and in which banks

10As already noted, empirical estimates suggest that digital currencies are not presently good money (Gorton et al.,
2022) but instead carry an inconvenience yield at present. Risks to so-called stablecoins could be captured by low δ .
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do not enjoy a productivity advantage. While this calibration yields very different parameter val-

ues, it nonetheless produces the same qualitative results.

4.1 Benchmark Results

We first consider the quantitative consequences of increasing digital currency to m = 18.27% and

m = 26.1%.11 As we show in Appendix B, the equilibrium consequences of converting a fraction

m ∈ (0,1) are qualitatively the same, and in many cases the quantitative significance scales almost

linearly with m. Table 4 provides the behavior of key model moments as a result of digital currency

issuance. As expected, deposit spreads decrease with digital currency, which provides a competing

form of liquidity. Figure 5 in Appendix B plots the equilibrium variables when increasing digital

currency to m = 18.27% and m = 26.1%.

Table 4: Model outcomes with baseline calibration, ε = 5.3. Averages of variables are computed
by integrating the moment of interest with respect to the stationary density.

Moment Baseline m = 0 m = 18.27% m = 26.1%

Average Deposit Rate 108.6 bps 76.9 bps 68.7 bps
Average Bank Leverage 10.11 11.34 11.79
Prob. of Crisis (ψ < 50%) 2.99% 5.97% 7.20%
Prob. of Distress (ψ < 100%) 65.77% 70.49% 71.91%
Average Sharpe Ratio 47.26% 47.43% 47.61%
Output Loss in Crisis -8.06% -8.78% -8.99%
Average Bank Holdings ψ 87.03% 83.41% 82.19%
Average Bank Equity η 11.52% 10.24% 9.86%
Asset Price Volatility σQ 3.19% 2.77% 2.64%
System Drift ηµη 0.20% 0.18% 0.17%
System Volatility ηση 4.20% 3.79% 3.67%
Average Asset Price Q 46.37 46.38 46.40
Welfare Gains (CE) – 2.81% 2.47%
Change in Bank Valuations (pct) – -6.80% -8.94%

Several robust results emerge. First, digital currencies harm the stability of the financial sector.
11These choices of m correspond to the optimal levels in the model with frictions and in the first-best setting,

discussed in greater detail below.
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Digital currency increases the probability of crises and the probability of distress. The financial

system rebuilds equity more slowly following losses (the system drift is lower) resulting in lower

average levels of equity. This last result should be surprising. Digital currency makes deposit

funding less attractive (lower spreads). In a static environment, that would make equity financing

relatively more attractive for banks, which would suggest that, all else equal, banks would shift

toward more equity financing because deposits are less attractive. Precisely the opposite happens

on average with financial frictions. Because banks are less able to rebuild equity after adverse

shocks (recall that equity issuance is expensive), banks on average have lower equity. Accordingly,

bank valuations decrease significantly.

Second, these levels of digital currency issuance improve household welfare, and the quanti-

tative sizes are significant, with welfare gains of more than 2% consumption-equivalents. Indeed,

there are some measures of stability that improve. In particular, the volatility of the system de-

clines, which primarily reflects a decrease in the volatility of asset prices. Average asset prices

increase with the issuance of digital currency, which is significant precisely because stability has

worsened (the asset price is lower when η is lower). Average asset prices increase because the

function Q(η) increases for all η even though the distribution f (η) worsens. Thus, financial mar-

kets improve, with lower volatility and higher prices, but the financial sector suffers.

Figure 4 plots the effects of digital currency on deposit spreads and household welfare over

the state space. Digital currency pushes down deposit spreads in general, but especially in times

of crisis when banks most desperately need to rebuild equity. The decline in deposit spreads for

low η is the primary reason that the probability of crisis increases with digital currency issuance.

Nonetheless, welfare is significantly improved by these levels of digital currency for every value

of η .

The positive results presented here are robust along a number of dimensions. First, the stability

consequences of digital currency are monotonic in m: higher levels of m further decrease finan-

cial stability. Second, the results are robust to considering a higher elasticity between deposits

and digital currency, varying costs of issuing currency, and varying the preference δ for digital

currency. We provide these results in Appendix B. The normative welfare results are somewhat
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Figure 4: The consequences of digital currency for deposit spreads and Welfare.

more subtle. Welfare is generally hump-shaped in m, as is also true in the first-best (Proposition

4). Accordingly, the optimal level of digital currency is parameter-dependent.

4.2 Welfare and Optimal Level of Digital Currency

We now consider the welfare consequences and optimal level of digital currency in greater detail.

Proposition 4 showed that in the absence of financial frictions, there was an aggregate externality

so that the optimal level of digital currency exceeded what would be provided in a competitive

market. We show that financial frictions can mitigate or even reverse this result.

Table 5 provides the optimal and equilibrium supply of digital currency with and without finan-

cial frictions, varying the elasticity of substitution ε and the preference for digital currency δ . The

equilibrium levels m̂ denote the supply of digital currency that would be produced in a competitive

environment by private issuance. The optimal levels are denoted by m∗. The subscript FB denotes

the first-best and the subscript 1 denotes the model with frictions. Recall that the case with ε = 53

closely approximates the case when DC and deposits are perfect substitutes.

As we found in our analytical result Proposition 4, it is always the case that m∗FB > m̂FB. It is

not too surprising that m̂FB < m̂1: in the first-best banks fund themselves entirely with deposits (no

equity), and therefore deposit spreads are lower than occur in the model with financial frictions.
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Table 5: Optimal and equilibrium supply of digital currency with and without financial frictions.
This table provides the competitive levels m̂ together with the optimal levels m∗. The subscript FB
denotes the first-best and the subscript 1 denotes the model with frictions.

First-Best Frictions
Currency preference m̂FB m∗FB m̂1 m∗1

Baseline elasticity ε = 5.3

δ = 1.25 9.0% 22.1% 14.7% 14.3%
δ = 1.00 9.9% 26.1% 16.8% 17.3%
δ = 0.50 12.9% 42.4% 24.6% 26.9%
δ = 0.25 15.6% 65.6% 30.8% 39.3%

Higher elasticity ε = 53

δ = 1.00 ≈ 0% 13.3% 6.4% 1.4%
δ = 0.50 ≈ 0% 25.0% 9.2% 1.4%
δ = 0.25 ≈ 0% 46.8% 7.8% 4.3%

Thus, with higher deposit spreads, there is a greater incentive to issue digital currency in the model

with frictions. What is most notable is the relationship of m∗1 with m̂1 and m∗FB.

First, and most importantly, financial frictions always decrease the optimal level of digital

currency relative to what would occur in the first-best. In the first-best there are no concerns

about financial stability; with financial frictions, digital currency harms financial stability, thus

decreasing the social benefit of digital currency.

Second, it is possible for the optimal level of digital currency to be less than what would be

privately produced in competitive equilibrium. This is precisely the opposite of what happens in the

absence of frictions. We see this in each case with high elasticity and in the baseline elasticity when

δ = 1.25. In these cases, the negative aggregate externalities coming from financial instability

outweigh the positive aggregate externality that is virtually hard-coded into the model.

As we have said, we do not take a stand on what “the right” values of ε and δ should be.

But it strikes us that most of the existing literature assumes that digital currencies, and especially
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CBDC, would be highly substitutable with bank deposits, and several authors point out reasons

that CBDC would dominate deposits (Fernández-Villaverde et al., 2021). If that’s the case, then

our quantitative results suggest that—taking as given the current environment in which banks face

financial frictions—optimal regulation would limit the supply of digital currencies.

4.3 Discussion

Calibration Robustness In our benchmark calibration we considered the financial sector as pri-

marily corresponding to the banking sector: deposit spreads are high, and output losses from disin-

termediation are significant. There may be good reasons to question those assumptions specifically

and to wonder about the robustness of our results to alternative calibrations more generally. In Ap-

pendix C we consider an alternative calibration that deviates from the benchmark in two key ways.

First, we consider significantly lower deposit spreads, treating deposits as more akin to shadow

banking activity. van Binsbergen, Diamond, and Grotteria (2022) find convenience yields on Trea-

suries in the 35-45bps range, which we use as a target for the convenience yields for financial

sector liabilities. Second, we assume that banks’ only advantage comes from their ability to issue

liquid liabilities. This is consistent with the evidence in Egan, Lewellen, and Sunderam (2021)

who find that 70% of the variation in bank value comes from deposit creation, not asset issuance,

suggesting that bank value is driven by their liabilities and not by investment advantages. This

would be consistent with shadow banking activity in which institutions hold tradable securities to

issue short-term debt—without enhancing the payoffs of the financial securities they hold.

Even though banks are much less important for liquidity provision in this alternative calibra-

tion, and are not at all important for the capital allocation, the overall results of our paper continue

to hold in that very different calibration with some quantitative differences. First, the potential

welfare gains are lower, with gains near 0.6% consumption-equivalent for m = 18.27%. Second,

the consequences for financial stability are much greater. With m = 18.27%, crises are more than 5

times more frequent and bank valuations decline by nearly 20%. In this case, because banks have

smaller advantages to start, the addition of digital currency is more destabilizing for the financial

system and provides fewer potential benefits.
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Traditional Banking and Stablecoin Issuance In our model financial intermediaries produce

liquidity by holding real risky assets. The “cost” of intermediation arises due to financial frictions

(the need to avoid bankruptcy) but there are otherwise no direct costs of intermediation (banks pay

a cost Tb, but this is not a resource cost that decreases output as does ι , the cost of issuing digital

currency). In contrast, digital currencies are issued by holding risk-free assets at an assumed cost.

Even though the costs κ can be quite small, they are still non-negligible.

How should we interpret the costs κ? In the case of a CBDC, this is likely capturing risks

to government funding that occur when the government substantially shortens the maturity of its

borrowing, and could potentially reflect inflationary risks. In the case of privately issued digital

currency, the cost could reflect the real costs of maintaining the infrastructure of a stable coin

(managing off-chain collateral) and potential protocol risks. It’s possible that the costs of issuing

digital currency are actually much smaller than we’ve assumed. In that case, our positive results

maintain, but the welfare gains of issuing digital currency will natural increase.

In our model, banks do not have the ability to issue stablecoins as part of their portfolio of of-

ferings. There are a few ways to potentially justify this assumption. First, banks may be prohibited

due to regulation. Second, the profitability of issuing digital currency is at best on the order of

basis points and yet is a very balance-sheet intensive activity. Regulatory constraints such as the

Supplementary Leverage Ratio may make issuance of digital currency backed 100% by risk-free

assets prohibitively expensive (indeed, there are many near-arbitrages of similar profitability, such

as CIP violations, that banks avoid due to balance sheet considerations). Finally, in some cases

the optimal level of m occurs when digital currency issuance loses money on average. In this case,

banks would optimally choose not to enter the market.

5 Conclusion

Digital currencies have the potential to greatly reshape the financial sector. We provide a macroe-

conomic model with a financial sector in which digital currencies coexist with bank deposits and

households hold both forms of liquidity. Our main theoretical result is that when banks face finan-

cial frictions (costly equity issuance), digital currency harms financial stability, increasing the like-
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lihood of crises and financial distress. Digital currencies depress deposit spreads, which hinders

banks’ abilities to recapitalize following losses. Digital currency, whether privately or publicly

issued, is likely to be detrimental for financial stability and bank valuations can be significantly

harmed. Despite the costs to financial stability, we find that digital currency can be welfare im-

proving for households. In our benchmark calibration, the welfare-maximizing level of digital

currency increases household welfare by 2.8% of consumption-equivalent even as the probability

of crises doubles from 3 to 6%. Our results suggest that financial frictions may limit the potential

benefits of digital currencies, and the optimal level of digital currency may be below what would

be issued in a competitive environment.
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Appendices

A Proofs and Additional Propositions

Household Optimality

Proof of Proposition 1, households’ optimality decisions. We characterize the household problem

as follows. Conjecture that households have a twice-differentiable value function

Vt =
log(wh,t)

r
+ht ,
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where ht is independent of the level of household wealth. By Ito’s lemma, households’ HJB is

log(wh,t)+ rht = max
xt≥0,ch,t

log(ch,t)+β log(`h,t)

+
1

rwh,t
µwh,twh,t−

1
2r(wh,t)2 (σwh,twh,t)

2

= max
xt≥0,ch,t

log(ch,t)+β log(`h,t)+
1
r

µwh,t−
1
2r

σ
2
wh,t .

Further, because σwh,t = xh,t(σ +σQ,t)+ xe,tσe,t ,

∂σwh,t

∂xh,t
= (σ +σQ,t),

∂σwh,t

∂xe,t
= σe,t .

Finally, households’ law of motion for their net worth can also be written as

dwh,t

wh,t
=dr f ,t + xh,t(drh,t−dr f ,t)+ xe,t(dre,t−dr f ,t)

+ xd,t(drd,t−dr f ,t)+ xdc,t(drdc,t−dr f ,t)+

(
Th,t−

ch,t

wh,t

)
dt.

Hence, wealth grows at the risk-free rate r f ,t plus the spread or risk-premium determined by allo-

cations in the other assets.

Note that total deposits and digital currency are given by xd,twh,t and xdc,twh,t . Given these
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observations and (6), the first-order conditions are

(xh,t) : 0 =
1
r
(E[drh,t ]− r f ,t)−

1
r

σwh,t
∂σwh,t

∂xh,t

= (E[drh,t ]− r f ,t−σwh,t(σ +σQ,t))

⇒ E[drh,t ]− r f ,t = σwh,t(σ +σQ,t)

(xe,t) : 0 =
1
r
(E[dre,t ]− r f ,t)−

1
r

σwh,t
∂σwh,t

∂xe,t

= E[dre,t ]− r f ,t−σwh,tσe,t

⇒ E[dre,t ]− r f ,t = σwh,tσe,t ,

(xd,t) : 0 = v′(`h,t)
∂`

∂xd,t
wh,t +

1
r
(rd,t− r f ,t)

⇒ rd,t = r f ,t− rv′(`h,t)
∂`

∂xd,t
wh,t

(xdc,t) : 0 = v′(`h,t)
∂`

∂xdc,t
wh,t +

1
r
(rdc,t− r f ,t)

⇒ rdc,t = r f ,t− rv′(`h,t)
∂`

∂xdc,t
wh,t

(ch,t) : 0 =
1

ch,t
− 1

rwh,t
,

⇒ ch,t = rwh,t .

Since consumption is proportional to wealth,

σch,t = xh,t(σ +σQ,t)+ xe,tσe,t . (23)

Hence the first-order conditions for xh,t and xe,t equate expected excess returns with the covariance

of household consumption and returns.

Risk-free Rate
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Lemma 2. Generally, the equilibrium risk-free rate is

dr f ,t =
(
r+µch,t−σ

2
ch,t−Twh,t

)
dt,

where Twh,t are household transfers that are proportional to household wealth. Thus, in the dy-

namic model, the risk-free rate is given by

r f ,t = r+gy,t−σ
2,

since government taxes are lump-sum and banks pay dividends only at the boundary. In the first-

best equilibrium, the risk-free rate is

r f ,FB = r+gb−σ
2 +DSFB,

reflecting net bank dividends.

Proof. To prove this claim, we employ the stochastic maximum principle (see Brunnermeier and

Sannikov (2016b)). Let Twh,t denote transfers proportional to household wealth and let TLS,t

denote lump-sum transfers that are not proportional to wealth. Let x̂t = (xy,t ,xd,t ,xdc,t ,xe,t) be

household’s portfolio weight on capital, deposits, digital currency, and bank equity respectively

(i.e., not risk-free bonds). The Hamiltonian is

Ht = e−rt log(ch,t)+ξt µwh,twh,t− ςtξtσwh,twh,t

where the drifts and volatilities are

µwh,twh,t = wh,t
(
dr f ,t +Twh,t + x̂t · (E[drt−dr f ,t ])

)
− ch,t +TLS,t

σwh,twh,t = wh,t
(
xh,t(σ +σQ,t)+ xe,tσe,t

)
.
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The FOCs with respect to ch,t is

0 = e−rt 1
ch,t
−ξt ,

which implies that ξt = e−rt/ch,t , hence by Ito’s lemma

dξt

ξt
= (−r−µch,t +σ

2
ch,t)dt−σch,t dWt .

By the stochastic maximum principle,

µξ ,tξt =−
∂

∂wh,t
Ht

=−ξt(
(
dr f ,t +Twh,t + x̂t · (E[drt−dr f ,t ])

)
− ςtσwh,t)

ςξ ,t =−σch,t

Using the above equation, together with the the FOCs from Proposition 1, and the implications of

the stochastic maximum principle for µξ ,t and ςξ ,t , we obtain

µξ ,t =−(E[dr f ,t ]+Twh,t).

Substitute in for µξ ,t to acquire

−(r+µch,t−σ
2
ch,t) =−(E[dr f ,t ]+Twh,t)

E[dr f ,t ] = r+µch,t−σ
2
ch,t−Twh,t ,

and hence dr f ,t = (r+µch,t−σ2
ch,t−Twh,t)dt.

In the dynamic equilibrium we have Twh,t = 0, µch,t = gy,t , and σch,t = σ , which yields the

equation for the risk-free rate in the dynamic equilibrium.

In the first-best banks hold the entire tree and fund themselves with deposits, and so the tree

is priced relative to the deposit rate. In the first-best (which is stationary, the banks’ portfolio
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condition can be written

E[drb]− rd,FB = (σ)(σ),

or
1

QFB
+gb− r f ,FB = σ

2−DSFB.

Rearranging the banks’ condition yields

QFB =
1

r f ,FB−gb +σ2−DSFB
.

Recall that the first-best price is QFB = 1
r , which implies

rd,FB = r+gb−σ
2, r f ,FB = r+gb−σ

2 +DSFB.

Bank Optimality

Proof of Proposition 2, banks’ optimality decisions. Homogeneity and price-taking imply that banks’

value function takes the form Ut = θtnb,t , where θt is the marginal value of banks’ equity. Further,

households’ discount factor is ξt = e−rtc−1
h,t because households have log utility. Therefore, the

HJB can be written as

rθtnb,tc−1
h,t = max

yb,t≥0,dζt ,ιt
dζtc−1

h,t +E[d(θtnb,tc−1
h,t )], (24)

subject to the budget and net-worth constraints. Conjecture that θt and ch,t both follow diffusions.

By Ito’s product rule,

d(θtnb,t)

θtnb,t
= (µθ ,t +µnb,t +σθ ,tσnb,t)dt +(σθ ,t +σnb,t)dWt .
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By Ito’s product and quotient rules,

(θtnb,tc−1
h,t )E

[
d(θtnb,tc−1

h,t )

θtnb,tc−1
h,t

]
= µθ ,t +µnb,t +σθ ,tσnb,t +σ

2
ch,t−µch,t−σch,t(σθ ,t +σnb,t).

After dropping the differential dt, equation (24) becomes

rθtnb,tc−1
h,t = max

yb,t≥0,ιt ,dζb,t≥0
c−1

h,t dζb,t +θtnb,tc−1
h,t (µθ ,t +µnb,t−µch,t +σ

2
ch,t

+σθ ,tσnb,t−σch,tσnb,t−σch,tσθ ,t).

Dividing through by θtnb,tc−1
h,t , substituting wealth terms we have

r = max
dζb,t

θtnb,t
+µθ ,t + rd,t + xb,t(E[drb,t ]− rd,t)−

dζb,t

nb,t
−Tb,t

−µch,t +σ
2
ch,t + xb,tσθ ,t(σ +σQ,t)− xb,tσch,t(σ +σQ,t)−σch,tσθ ,t

Unlike the household problem, we may plug this constraint directly into the problem because

banks do not have money-in-the-utility demand or costs from raising bank deposits which would

introduce spreads into the bank problem.

The risk-free interest rate satisfies r f ,t = r+µch,t −σ2
ch,t . Adding µch,t −σ2

ch,t to both sides of

the HJB and re-arranging:

r f ,t = max
dζb,t

nb,t

(
1
θt
−1
)
+µθ ,t−σch,tσθ ,t + r f ,t + rd,t− r f ,t

+ xb,t(E[drb,t ]− rd,t +(σθ ,t−σch,t)(σ +σQ,t))−Tb,t

r f ,t− rd,t = max
dζb,t

nb,t

(
1
θt
−1
)
+µθ ,t−σch,tσθ ,t−Tb,t

+ xb,t(E[drb,t ]− rd,t +(σθ ,t−σch,t)(σ +σQ,t)).
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The first-order conditions imply

dζb,t > 0 if θt ≤ 1; dζb,t = 0 if θt ∈ (1,1+ γ); dζb,t < 0 if θt ≥ 1+ γ;

E[drb,t ]− rd,t = (σch,t−σθ ,t)(σ +σQ,t).

The FOC on asset holdings can be re-written as

E[drb,t ]− r f ,t = (σch,t−σθ ,t)(σ +σQ,t)− (r f ,t− rd,t).

Plugging these first-order conditions into the HJB and re-arranging yields

µθ ,t = r f ,t− rd,t +σch,tσθ ,t +Tb,t .

Finally, it remains to price traded bank equity shares. To start, the return to bank equity includes

dividends paid dζt and capital gains. The aggregate value of bank dividends, discounted by the

household stochastic discount factor, is Ut = θtNb,t . Banks pay dividends only when θt = 1. Since

the dividend payout decreases bank wealth by exactly the amount paid, this means that the value

Ut = θtNb,t does not change when dividends are paid (there is an identical offsetting term in the

capital gain). Because consumption is proportional to wealth, banks’ HJB implies that

r+µch,t−σ
2
ch,t = µθ ,t +µnb,t +σθ ,tσnb,t−σch,tσnb,t−σch,tσθ ,t .

It follows that

r f ,t = µθ ,t +µnb,t +σθ ,tσnb,t−σch,t(σnb,t +σθ ,t),

and so

E[µθ ,t +µnb,t +σθ ,tσnb,t− r f ,t ] = σch,t(σθ ,t +σnb,t). (25)
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Then the market price of traded bank shares equals θtNb,t so that E[µθ ,t +µnb,t +σθ ,tσnb,t−r f ,t ] =

σch,t(σθ ,t +σnb,t), where E[dre,t ] = µθ ,t + µnb,t +σθ ,tσnb,t and σe,t = σθ ,t +σnb,t . The expected

return on equity includes expected changes in the book equity µnb,t and expected changes in the

marginal valuation µθ ,t +σθ ,tσnb,t , where the last term is the Ito interaction term. We need not

include the dividend yield dζt directly for the reasons just given. In addition, the volatility of

returns is given by σe,t = σθ ,t +σnb,t . From households’ optimization over bank equity, E[dre,t ]−

r f ,t = σch,tσe,t .

Characterizing Equilibrium

Proof of Lemma 1, law of motion for ηt . After substituting banks’ asset pricing condition and us-

ing xb,t = ψt/ηt , the process for banks’ aggregate equity Nb,t is

dNb,t

Nb,t
=

(
rd,t +

ψt

ηt
(σch,t−σθ ,t)(σ +σQ,t)−Tb,t

)
dt−

dζb,t

Nb,t
+

ψt

ηt
(σ +σQ,t)dWt

=

(
rd,t +

ψt

ηt
(σch,t−σθ ,t)(σ +σQ,t)−Tb,t

)
dt−

dζb,t

Nb,t
+

ψt

ηt
(σ +σQ,t)dWt .

The law of motion for the value of the tree is

d(QtYt)

QtYt
= (µQ,t +gy,t +σσQ,t)dt +(σ +σQ,t)dWt .

Because banks’ asset pricing condition always holds in equilibrium, we may write

µQ,t = r f ,t−DSt +(σch,t−σθ ,t)(σ +σQ,t)−
1

Qt
−gy,t−σσQ,t ,

= r−DSt−σθ ,t(σ +σQ,t)−
1

Qt
.

Substituting into the law of motion for the value of capital

d(QtYt)

QtYt
=

(
r−DSt−σθ ,t(σ +σQ,t)−

1
Qt

+gy,t +σσQ,t

)
dt +(σ +σQ,t)dWt .
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By Ito’s quotient rule,

d(1/(QtYt))

1/(QtYt)
=

(
(σ +σQ,t)

2−
(

r−DSt−σθ ,t(σ +σQ,t)−
1

Qt
+gy,t +σσQ,t

))
dt− (σ +σQ,t)dWt .

Using Ito’s product rule,

dηt

ηt
=

(
rd,t +

ψt

ηt
(σch,t−σθ ,t)(σ +σQ,t)−Tb,t

)
dt−

dζb,t

Nb,t

+

(
(σ +σQ,t)

2−
(

r−DSt−σθ ,t(σ +σQ,t)−
1

Qt
+g+σσQ,t

))
dt− (σ +σQ,t)dt

− ψt

ηt
(σ +σQ,t)

2 dt +
(

ψt

ηt
−1
)
(σ +σQ,t)dWt .

The drift simplifies to

µη ,t =

(
ψt

ηt
−1
)
((σch,t−σθ ,t)− (σ +σQ,t))(σ +σQ,t)−Tb,t +

1
Qt
−

dζb,t

Nb,t
.

Define dΞt ≡ dζb,t/Nb,t as a control creating reflecting barriers. The drift and volatility of dηt/ηt

now match (14).

Proof of Proposition 3. The proposition has the same proof as the analogous statements in Phelan

(2016); Chen and Phelan (2022b). We derive the smooth pasting condition here. Suppose there

exists a market for claims on the aggregate capital stock. Arbitrage pricing for the risky asset

requires that

QtYt = Et

[∫
∞

t

ξτ

ξt
Divτ dτ

]
=Ch,tEt

[∫
∞

t
e−r(s−t)Divs

Ch,τ
dτ

]

where Divt are dividends from capital. Define Gt ≡ QtYt/Ch,t . Then the previous equation simpli-

fies to

Gt = Et

[∫
∞

t
e−r(τ−t)Divs

Ch,τ
dτ

]
,
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which implies the equation

rGt =
Divt

Ch,t
+E[dGt ].

Drop time subscripts to reduce clutter and plug in for household consumption.

G≡ QY
Ch

=
QY

rq(1+(θ −1)η)K
=

1
r(1+(θ −1)η)

.

If there is a reflecting barrier at η = ηR, then smooth pasting requires

0 =
∂

∂η
G(ηR) =−G

θ ′(ηR)ηR +θ(ηR)−1
1+(θ(ηR)−1)ηR .

Note that this condition is equivalent to requiring Q′(ηR) = 0, which is the standard smooth pasting

condition for an asset price. The derivative of G with respect to η captures the marginal benefit of

increasing η at the barrier, and it should equal the marginal cost of the barrier. However, because

banks pay the cost of reflection, someone holding a claim to the aggregate capital stock faces zero

marginal cost. Therefore, the smooth-pasting condition for Qt at a barrier ηR is

θ
′(ηR)ηR +θ(ηR) = 1. (26)

First Best

Proof of Proposition 5. Define ˆ̀ =
(
(QFB)

ε−1
ε +δ

(
mqD) ε−1

ε

) ε

ε−1
. Then `FB = r

1−ι
ˆ̀. Note that(

`
xdc

)
=
(

ˆ̀
mqD

)
. Maximizing welfare is equivalent to choosing m to maximize

log(1− ι)+β log( ˆ̀)−β log(1− ι).
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For an interior solution, the optimal m∗ solves

κqD

1− ι
=

β

ˆ̀
∂ ˆ̀

∂ (mqD)
qD +

βκqD

1− ι
,

κqD

1− ι
=

rβ

`(1− ι)

∂`

∂xdc
qD +

βκqD

1− ι
,

κ =
rβ

`

∂`

∂xdc
+βκ,

κ = DCS+βκ.

For further intuition, note that

∂xdc

∂m
= rqD (1− ι)(1)− (m)(−κqD)

(1− ι)2 =
rqD

(1− ι)2 > 0,

and

∂xd

∂m
=

rQFBκqD

(1− ι)2 =
κqD

(1− ι)2 > 0.

Digital currency increases digital currency directly, but also increase the fraction of wealth held in

deposits and digital currency, thus providing a second-round effect increasing liquidity services.

B Additional Results

This section provides results underlying the analysis in the main text, or additional robustness

results beyond the analysis in the main text.

B.1 Tables

Table 6 provides the equilibrium consequences of introducing digital currency but setting the cur-

rency preference to δ = 0.5 and κ = 50bps. The other parameters match the baseline calibration

with ε = 5.3. The qualitative results match the baseline results in the paper, though the quantitative
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significance decreases (crisis probability increases by less, welfare gains are smaller, decrease in

bank valuations are smaller, etc.)

Table 6: Model outcomes with baseline calibration, ε = 5.3 with δ = 0.5. Averages of variables
are computed by integrating the moment of interest with respect to the stationary density.

Moment Baseline m = 0 m = 18.27% m = 26.1%

Average Deposit Rate 108.6 bps 90.6 bps 85.4 bps
Average Bank Leverage 10.11 10.71 10.96
Prob. of Crisis (ψ < 50%) 2.99% 4.36% 4.98%
Prob. of Distress (ψ < 100%) 65.77% 68.43% 69.39%
Average Sharpe Ratio 47.26% 47.25% 47.36%
Output Loss in Crisis -8.04% -8.48% -8.61%
Average Bank Holdings ψ 87.03% 85.18% 84.51%
Average Bank Equity η 11.52% 10.83% 10.61%
Asset Price Volatility σQ 3.19% 2.96% 2.89%
System Drift ηµη 0.20% 0.19% 0.18%
System Volatility ηση 4.20% 3.98% 3.91%
Welfare Gains (CE) – 1.76% 1.86%
Change in Bank Valuations (pct) – -3.56% -4.76%

Table 7 provides the equilibrium consequences of introducing digital currency with a high

elasticity between digital currency and deposits, setting ε = 53. The other parameters match the

baseline calibration. The results are comparable to the benchmark results with ε = 5.3 except that

in this case with high substitutibility welfare decreases at these levels of m.
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Table 7: Model outcomes with baseline calibration and high elasticity, ε = 53. Averages of vari-
ables are computed by integrating the moment of interest with respect to the stationary density.

Moment Baseline m = 0 m = 18.27% m = 26.1%

Average Deposit Rate 108.6 bps 80.5 bps 71.5 bps
Average Bank Leverage 10.11 11.22 11.64
Prob. of Crisis (ψ < 50%) 2.99% 5.64% 6.79%
Prob. of Distress (ψ < 100%) 65.77% 70.06% 71.58%
Average Sharpe Ratio 47.26% 47.43% 47.49%
Output Loss in Crisis -8.01% -8.72% -8.96%
Average Bank Holdings ψ 87.03% 83.85% 82.64%
Average Bank Equity η 11.52% 10.39% 9.99%
Asset Price Volatility σQ 3.19% 2.81% 2.68%
System Drift ηµη 0.20% 0.18% 0.17%
System Volatility ηση 4.20% 3.84% 3.71%
Welfare Gains (CE) – -0.98% -1.92%
Change in Bank Valuations (pct) – -5.95% -8.19%

B.2 Additional Figures

B.2.1 Baseline Calibration

Figure 5 plots the equilibrium variables when increasing digital currency to m = 18.27% and m =

26.1%.
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Figure 5: Consequences of digital currency for equilibrium prices, allocations, evolutions, and
stationary density in baseline economy. In each panel, the horizontal axis is the state variable η ,
which is the ratio of banks’ book equity to the total value of capital.
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Dependence on m and monotonicity of positive results We now present figures that show the

equilibrium consequences of converting a fraction m∈ (0,1) of government debt to digital currency

over the entire range. The main takeaway is that our positive results are generally monotonic in

m: if digital currency increases (decreases) a variable X , then the X increases (decreases) by even

more for higher m. Some of the relationships are close to linear. Welfare, in contrast, is concave in

m, and hump-shaped for intermediate values of κ .

Importantly, for lower values of m issuance of digital currency is profitable (when the spread

DCSt exceeds the cost κ) while for some higher values of m issuance of digital currency loses

money. We use the stationary distribution f (η) to calculate averages of variables and the proba-

bility of crises and distress.

When we adjust δ , we also adjust the digital currency intermediation cost to 100δ bps so that

δ adjusts for how digital currency spreads relate to deposit spreads. In this way, the cost κ is still

near the average digital currency spread for m in the neighborhood of our benchmark economy.

Baseline elasticity with robustness to δ Figure 6 presents our benchmark quantitative results

with ε = 5.3 (the elasticity of substitution between bank deposits and cash), varying the preference

parameter δ . We set the issuance cost κ = δ/100 so that the average spread on digital currency

is close to the cost (recall that the average level of deposit spreads without digital currency is

108bps). For low levels of m the spread on digital currency is high (digital currency is scarce) and

so issuance is profitable.
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Figure 6: The effects of digital currency on financial stability and welfare with ε = 5.3, varying
the digital currency preference δ . Intermediation cost set to κ = δ/100.
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Several robust results emerge. First, digital currencies harm the various “bottom line metrics”

for financial stability. Digital currency increases the probability of crises (panel (b)) and the prob-

ability of distress (panel (a)). The dynamics of bank equity feature lower average volatility (d)

but lower average drift (c), reflecting a greater challenge rebuilding equity after losses because

deposit spreads are lower. As a result, the average level of bank equity decreases (panel (e)). This

also reflects a decrease in the upper boundary η that occurs with digital currency. Thus, while the

volatility of the financial system decreases, the overall stability suffers, reflected in higher prob-

abilities of crises and distress and lower levels of equity. Not shown is that asset price volatility

decreases monotonically with digital currency issuance and asset prices increase.

Figure 7 provides additional insight into the effects of digital currency on financial stability.

The panels plot the thresholds for η determining cutoffs for distress and crises. The distress (crisis)

threshold is the value of η such that for η below the threshold bank holdings satisfy ψ < 1 (ψ <

0.5). Digital currency increases the crisis threshold, implying that bank holdings fall below ψ = 0.5

earlier in the cycle than would otherwise occur. Surprisingly, digital currency increases the distress

threshold, implying that banks hold the full capital stock for longer. Nonetheless, the probability

of distress actually increases even though banks hold ψ = 1 in some cases when they otherwise

would not have.
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Figure 7: Changes in fire sale thresholds with ε = 5.3, varying the digital currency preference δ .
Intermediation cost set to κ = δ/100. The distress (crisis) threshold is the value of η such that for
η below the threshold bank holdings satisfy ψ < 1 (ψ < 0.5).
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Intermediation costs Our positive results are quantitatively, but not qualitatively, sensitive to the

cost κ of issuing digital currency. Decreasing the cost κ slightly mitigates the comparative dynam-

ics (e.g., probability of crisis increases but by slightly less). In contrast, the welfare results depend

critically on κ . Figures 8-9 plot results with ε = 5.3, δ = 1 and varying the cost κ . Unsurprisingly,

the welfare gains from digital currency are higher with lower costs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
m, digital currency as fraction of govt debt

0

2

4

6

8

10

12

14

C
ha

ng
e 

in
 P

ro
ba

bi
lit

y

Change in Distress Probability

=100bps
=50bps
=1bps

(a) Distress (ψ < 1) Probability

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
m, digital currency as fraction of govt debt

0

2

4

6

8

10

12

14

C
ha

ng
e 

in
 P

ro
ba

bi
lit

y

Change in Crisis Probability

=100bps
=50bps
=1bps

(b) Crisis (ψ < 0.5) Probability

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
m, digital currency as fraction of govt debt

0.128

0.13

0.132

0.134

0.136

0.138

0.14

0.142

0.144

0.146

0.148

D
is

tr
es

s 
E

ta

Distress Eta

=100bps
=50bps
=1bps

(c) Distress (ψ < 1) Thresold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
m, digital currency as fraction of govt debt

0.015

0.016

0.017

0.018

0.019

0.02

0.021

C
ri

si
s 

E
ta

Crisis Eta

=100bps
=50bps
=1bps

(d) Crisis (ψ < 0.5) Threshold

Figure 8: Changes in financial stability and fire sale thresholds with ε = 5.3, varying the cost κ .

57



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
m, digital currency as fraction of govt debt

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21
 

System Drift

=100bps
=50bps
=1bps

(a) Systemic drift ηµη

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
m, digital currency as fraction of govt debt

3

3.2

3.4

3.6

3.8

4

4.2
System Vol

=100bps
=50bps
=1bps

(b) Systemic volatility ηση

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
m, digital currency as fraction of govt debt

-35

-30

-25

-20

-15

-10

-5

0

P
ct

 D
 E

ta
 A

vg

Pct Change in Average Bank Equity

=100bps
=50bps
=1bps

(c) Average Bank Equity η

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
m, digital currency as fraction of govt debt

-20

-10

0

10

20

30

40

C
on

su
m

pt
io

n 
E

qu
iv

al
en

t

Welfare Gains

=100bps
=50bps
=1bps

(d) Welfare

Figure 9: Changes in financial stability and welfare with ε = 5.3, varying the cost κ .

High Elasticity Figures 10-11 present our results with the higher elasticity of ε = 53, varying

the preference parameter δ . Again, positive results are monotonic in m. Welfare gains are much

smaller and welfare is generally decreasing with a high elasticity between deposits and digital

currency.
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Figure 10: The effects of digital currency on financial stability and welfare with ε = 53, varying
the digital currency preference δ . Intermediation cost set to κ = δ/100.
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Figure 11: Changes in fire sale thresholds with ε = 53, varying the digital currency preference δ .
Intermediation cost set to κ = δ/100. The distress (crisis) threshold is the value of η such that for
η below the threshold bank holdings satisfy ψ < 1 (ψ < 0.5).

C Alternative Calibration

This section presents our alternative calibration strategy that considers the financial sector more

akin to shadow banking activities. The main results of our paper are qualitatively robust in this

alternative—though very different—calibration.

In our benchmark calibration we considered the financial sector as primarily corresponding to

the banking sector: deposit spreads are high, and output losses from disintermediation are signif-

icant. In this section we suppose that financial intermediaries are shadow banks (or even money

market funds), holding financial securities and issuing short-term liabilities that have money-like

qualities. This calibration deviates from the benchmark one in two key ways.

First, we consider significantly lower deposit spreads, treating deposits as more akin to shadow

banking activity. van Binsbergen, Diamond, and Grotteria (2022) find convenience yields on Trea-

suries in the 35-45bps range, which we use as a target for the convenience yields for financial

sector liabilities.

Second, we assume that banks’ only advantage comes from their ability to issue liquid liabili-

ties. There are two ways to think about this assumption. First, this is consistent with the evidence
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in Egan, Lewellen, and Sunderam (2021) who find that 70% of the variation in bank value comes

from deposit creation, not asset issuance, suggesting that bank value is driven by their liabilities

and not by investment advantages. Second, this would be consistent with shadow banking activity

in which institutions hold tradable securities to issue short-term debt—presumably without en-

hancing the payoffs of the financial securities they hold. Accordingly, we also set the volatility of

returns lower, though still within the values found in the literature.

C.1 Calibration and Model Dynamics

Parameters We target an adjusted value for average deposit spreads, but we continue to target

average leverage of 10 and crisis probability of 3. Because banks no longer have a productivity

advantage, the Sharpe ratio in the model is substantially lower. It is no longer a target, but we

provide the value below for comparison (the resultant Sharpe is comparable to what Drechsler

et al., 2018, produce in their calibration). Table 8 provides the parameters used in this calibration

as well as the empirical moments.

Model Dynamics Figures 12-13 plot the behavior of the model with this alternative calibration.

There are a few minor differences compared to the benchmark calibration but otherwise the model

dynamics are quite comparable. The range of η is shorter because the issuance costs are signifi-

cantly lower, which provides incentive to issue equity at a higher η and to pay out dividends at a

lower η .

C.2 Quantitative Results with Digital Currency

We now consider the effects of digital currency in this alternative calibration. Because deposit

spreads are substantially lower, the spreads on digital currency are substantially lower and we

therefore impose a lower cost of issuing digital currency, setting κ = 30bps instead of 100bps as

before. Table 9 considers the same exercise of setting m = 18.27% and m = 26.1% within this

“shadow banking economy.”

The positive results in this economy are even more quantitatively significant. The probabilities
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Figure 12: Alternative “shadow banking” calibration: equilibrium prices, allocations, evolutions,
and stationary density. In each panel, the horizontal axis is the state variable η , which is the ratio
of banks’ book equity to the total value of capital.
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Figure 13: Alternative “shadow banking” calibration: deposit spreads, system drift, welfare, and
bank valuations.
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Table 8: Model parameters in alternative calibration.

Description Parameter Value

Parameters Values

Discount Rate r 2%
Growth Rate gb = gh 2%
Fundamental Volatility σ 1.5%
Liquidity Preference β 0.12
Equity Issuance Cost γ 2.85
Bank Transfers Tb 1.5%
Government Debt qD 50

Empirical Moments

Empirical Moment Data Model

Average Deposit Rate 35 bps 32.3 bps
Average Bank Leverage 10 11.61
Prob. of Crisis (ψ < 50%) 3% 3.05%
Average Sharpe Ratio (not a target) 48% 13.28%

of crises and distress increase dramatically and bank valuations fall by 3 times as much as they

did in the previous calibration. Qualitatively the results are all similar. In terms of welfare, this

economy continues to feature welfare gains, though the quantitative significance are much smaller.

Figure 14 plots the changes in equilibrium when introducing digital currency using the alterna-

tive calibration.
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Figure 14: Alternative “shadow banking” calibration: effects of digital currency on equilibrium
prices, allocations, evolutions, and stationary density in baseline economy. In each panel, the
horizontal axis is the state variable η , which is the ratio of banks’ book equity to the total value of
capital.
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Table 9: Model outcomes with alternative calibration, ε = 5.3. Averages of variables are computed
by integrating the moment of interest with respect to the stationary density.

Moment Baseline m = 0 m = 18.27% m = 26.1%

Average Deposit Rate 32.3 bps 26.4 bps 25.1 bps
Average Bank Leverage 11.61 13.24 13.83
Prob. of Crisis (ψ < 50%) 3.05% 16.99% 22.31%
Prob. of Distress (ψ < 100%) 49.60% 60.27% 64.12%
Average Sharpe Ratio 13.28% 13.29% 13.36%
Output Loss in Crisis -0.00% 0.00% -0.00%
Average Bank Holdings ψ 86.64% 78.00% 74.52%
Average Bank Equity η 8.11% 6.44% 5.88%
Asset Price Volatility σQ 0.49% 0.35% 0.31%
System Drift ηµη 0.20% 0.16% 0.15%
System Volatility ηση 1.57% 1.34% 1.26%
Average Asset Price Q 49.28 49.35 49.38
Welfare Gains (CE) – 0.61% 0.37%
Change in Bank Valuations (pct) – -18.95% -25.29%
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Figure 15: Alternative “shadow banking” calibration: effects of digital currency on household
welfare and bank valuations.
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C.3 Welfare and Optimal Level of Digital Currency

Table 10 provides the optimal and equilibrium supply of digital currency with and without financial

frictions, varying the elasticity of substitution ε and the preference for digital currency δ . In

this calibration, the optimal level of digital currency m∗1 in the model with frictions is always

less than the optimal level in the first-best m∗FB as well as what would be privately produced in

competitive equilibrium m̂1. In the shadow banking calibration, the negative externalities from

financial stability always outweigh the built-in positive aggregate externality from digital currency

issuance.

Table 10: Optimal and equilibrium supply of digital currency with and without financial frictions
in the “shadow banking” calibration. This table provides the competitive levels m̂ together with the
optimal levels m∗. The subscript FB denotes the first-best and the subscript 1 denotes the model
with frictions.

First-Best Frictions
Currency preference m̂FB m∗FB m̂1 m∗1

Baseline elasticity ε = 5.3

δ = 1.25 11.2% 14.9% 19.6% 11.1%
δ = 1.00 12.5% 17.0% 22.1% 12.8%
δ = 0.50 16.9% 24.8% 29.1% 18.3%

Higher elasticity ε = 53

δ = 1.00 ≈ 0% 0.47% 7.8% 0.47%
δ = 0.50 ≈ 0% 0.53% 8.2% 0.52%

The shadow banking calibration suggests that the potential welfare gains from digital currency

are small, the optimal level of digital currency would be quite low, and the consequences for

financial stability are severe.

The careful reader may wonder: if the shadow banking calibration gives traditional interme-

diaries the smallest advantages (lower deposit spreads and no productivity gains), then why are

the welfare gains from CBDC so low (and the likelihood for welfare losses high)? Our modeling
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assumption still privileges traditional liquidity provision. In our model, financial intermediaries

produce liquidity by holding real risky assets. The “cost” of intermediation arises due to financial

frictions (the need to avoid bankruptcy) but there are otherwise no costs of intermediation (banks

pay a cost Tb, but this is not a resource cost that decreases output as does ι). In contrast, digital

currencies are issued by holding risk-free assets at an assumed cost. Even though the costs κ can

be quite small, they are still non-negligible.

How should we interpret the costs κ? In the case of a CBDC, this is likely capturing risks

to government funding that occur when the government substantially shortens the maturity of its

borrowing, and could potentially reflect inflationary risks. In the case of privately issued digital

currency, the cost could reflect the real costs of maintaining the infrastructure of a stable coin

(managing off-chain collateral) and potential protocol risks. It’s possible that the costs of issuing

digital currency are actually much smaller than we’ve assumed. In that case, our positive results

maintain, but the welfare gains of issuing digital currency will natural increase.

C.4 Robustness

Range of m with baseline elasticity and robustness to δ Figure 16 considers our alternative

calibration and plots outcomes varying m ∈ (0,1), with ε = 5.3. The qualitative results match the

baseline calibration, but the quantitative consequences can be quite different. In particular, the

probabilities of crises and distress increase by much more in this calibration. Welfare gains are

significantly smaller as well.
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Figure 16: Alternative “shadow banking” calibration: the effects of digital currency on financial
stability and welfare with ε = 5.3, varying the digital currency preference δ . Intermediation cost
set to κ = 0.3∗δ/100.
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Figure 17: Alternative “shadow banking” calibration: changes in fire sale thresholds with ε = 5.3,
varying the digital currency preference δ . Intermediation cost set to κ = 0.3∗δ/100. The distress
(crisis) threshold is the value of η such that for η below the threshold bank holdings satisfy ψ < 1
(ψ < 0.5).

Alternative Calibration: Range of m with high elasticity Figures 18-19 present our results

with the higher elasticity of ε = 53, varying the preference parameter δ in the alternative calibra-

tion. Welfare is generally decreasing in m over the entire range.
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Figure 18: Alternative “shadow banking” calibration: the effects of digital currency on financial
stability and welfare with ε = 53, varying the digital currency preference δ . Intermediation cost
set to κ = 0.3∗δ/100.
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Figure 19: Alternative “shadow banking” calibration: changes in fire sale thresholds with ε = 53,
varying the digital currency preference δ . Intermediation cost set to κ = 0.3∗δ/100. The distress
(crisis) threshold is the value of η such that for η below the threshold bank holdings satisfy ψ < 1
(ψ < 0.5).
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