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Abstract

Big technological improvements in a new, secondary sector lead to a period of

excitement about the future prospects of the overall economy, generating boom-bust

dynamics propagating through credit markets. Increased future capital prices relax

collateral constraints today, leading to a boom before the realization of the shock.

But reallocation of capital toward the secondary sector when the shock hits leads to

a bust going forward. These cycles are perfectly foreseen in our model, making them

markedly different from the typical narrative about unexpected financial shocks used

to explain crises. In fact, these cycles echo Minsky’s original narrative for financial

cycles, according to which “financial trauma occur as normal functioning events in a

capitalistic economy.”(Minsky, 1980, p. 21)
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1 Introduction

There is an old idea in macroeconomics that major technological advances generate dra-

matic boom-bust cycles that typically finish in a pronounced and somewhat predictable

financial retrenchment. There is growing recent evidence that market economies are

subject to endogenous boom-bust cycles, with times of expansion “sowing the seeds”

for the slump that follows (see Beaudry, Galizia, and Portier, 2017, 2020). The Great

Recession, the Great Depression, and the Japanese slump of the 1990s were all preceded

by periods of major technological innovation (Cao and L’Huillier, 2018), and it is easy to

find similar evidence for the case of sudden-stops in emerging markets (Boz, 2009).

It is well known that these major episodes often feature credit expansions during the

boom and financial contractions, or even crises, during the slump. Economists since

Fisher (1933), Keynes (1936), and Minsky (1982, 1986) have seen the behavior of financial

markets as playing a central role in economic downturns. There remains considerable

debate about the causes and consequences of recessions, and still less is known about

the role, if any, of endogenous boom-bust dynamics emphasized by, for example, Kindle-

berger and Aliber (2011) and Minsky (1980, 1982).

The objective of this paper is to rationalize these ideas in a canonical macro-finance

framework. We consider a standard model with collateral constraints following Kiyotaki

and Moore (1997). We add two main ingredients to this model. The first ingredient is

the presence of news, in the form of advance information, about a positive technology

shock that will hit the economy in the future. The second ingredient is the presence

of an innovative sector. Indeed, the technology shock considered does not primarily

impact the traditional sector of the economy, which comprises the most productive users

of capital and who invest with leverage. Rather, the shock impacts primarily a new,

secondary, sector.

As we show, the combination of these novel ingredients makes the task of obtaining

predictable Minsky cycles straightforward. In fact, our baseline model features perfect

foresight and rational expectations, and therefore we do not need to introduce any type

of sluggishness in beliefs or behavioral failure to anticipate the equilibrium consequences
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of the productivity shock. Thus, the mechanisms of the “Minsky Cycle” in our model

are, at face value, quite distinct from the “Wile E. Coyote” moment in the literature

(see Eggertsson and Krugman, 2012); financial retrenchment in our model is completely

predictable and foreseen.

Our paper offers a parsimonious and internally consistent model to rationalize macro-

financial boom-bust cycles. Two essential channels are responsible for this, each owing

to the novel ingredients emphasized above. News leads to a rise in asset prices via the

financial market, allowing for more leverage immediately. Second, because the shock

primarily impacts a secondary sector, capital is reallocated from its primary users to

its secondary users. Since the primary users are leveraged, this leads to a bust when

reallocation takes place to repay debts.

The two channels result in the following narrative of a rational and predictable

Kindleberger-Minsky cycle: The economy experiences news of a positive productivity

boom in some new technology or secondary sector, which will lead to a reallocation

of resources toward the new technology. In anticipation of future growth, asset prices

increase right away, which fuels a credit expansion affecting the entire economy, not just

the sector that will experience the technological innovation. This credit-filled boom is

primarily driven by leveraged users of capital. However, the positive shock in the new

sector pulls resources away from the economy’s primary producers, who have taken on

more debt during the credit expansion, and the primary producers are forced to cut

their capacity to repay debts. This deleveraging process leads to a persistent bust af-

ter the transitory positive shock dissipates. Our narrative matches the stylized facts of

emerging market “sudden stop” episodes, as well as for the Great Recession in the U.S.,

which was preceded by new innovations in the Information Technology sector as well as

a boom in the housing market.1

There are several reasons why news of a reallocative technology shock is an attractive

candidate to make sense of Minsky Cycles. First, news of a future reallocation endoge-

1For simplicity, we start with a transitory shock as a way of capturing the dynamics that typically
occur when a new technology or innovation arises and investment flows in quickly, perhaps exceeding
the steady-state level. However, whether the shock is transitory or permanent does not matter for the
argument, as we show in an extension. Our focus in not on modeling the behavior of investment in the
innovative technology, but to focus on how such an innovation affects the broader economy.
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nously leads to boom-bust dynamics in asset prices and output. Additionally, a real-

locative technology shock can lead output to fall while asset prices are still high. This

disconnect between real and financial variables together with the subsequent conver-

gence generates predictable dynamics similar to a “Minsky Moment” when asset prices

suddenly “correct” after an unsustainable period of exuberance. Second, a reallocative

techonology better matches the dynamics of a Minsky cycle than a technology shock

that primarily affects the leveraged users. A technology shock that primarily affects the

leveraged users of capital leads unequivocally to a persistent boom. In order for a bust to

occur, good news must be followed by bad news, in which case the shocks are truly driv-

ing the “cycle” rather than endogenous dynamics. This point underlines the relevance

of technological innovation (or, in more abstract terms, productivity improvements in a

secondary sector) for generating Kindleberger-Minsky cycles. Finally, and perhaps most

importantly, a reallocative technology shock is a much better candidate than a shock to

financial conditions directly. A reallocative technology shock produces dynamics remi-

niscient of Minsky’s narrative, but a shock relaxing financial conditions directly (e.g., a

“financial liberalization”) produces very different dynamics in output and asset prices.

A temporary relaxation of collateral constraints produces an endogenous cycle without

an increase in asset prices (asset prices stay the same and then fall going forward), but

high asset prices are central to the narratives of Minsky, Fisher, and Keynes.

While our baseline model does not require the introduction of departures from a full

information rational expectations framework in order to generate these cycles, we nev-

ertheless explore the implications of departures from this theoretical baseline. Indeed,

whereas we feel that the evidence strongly suggests that periods of great financial and

macroeconomic excitement may be rooted in something fundamental as a technologi-

cal revolution or a structural reform, there is also a large body of evidence suggesting

that the associated rosy beliefs about the future are partly flawed. A growing empirical

literature suggests that this could be the result of behavioral biases leading to exces-

sive extrapolation (Bordalo et al., 2018; Krishnamurthy and Li, 2020), or neglect of rare

systemic events (Gennaioli et al., 2012).2 In an extension condisidering a rise in expecta-

2See also Mian et al. (2017) and Greenwood et al. (2020).
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tions of the future not warranted by fundamentals (i.e., “noise shocks”), we find that our

results regarding reallocation are completely unchanged, with a larger bust in output

and the asset price. In an extension considering belief extrapolation akin to diagnostic

expectations, we find that extrapolation neatly interacts with our baseline channels by

amplifying the boom-bust cycle.

Related Literature

We are far from the first paper to consider endogenous boom-bust dynamics in market

economies. Beaudry, Galizia, and Portier (2017, 2020) provide evidence of medium-

run cyclical behavior in aggregate variables. Beaudry et al. (2018) propose a model

that includes Hayekian mechanisms of over-investment and liquidation with Keynesian

mechanisms working through aggregate demand. Rognlie, Shleifer, and Simsek (2018)

consider how over-investment in one sector (as an initial condition) together with nom-

inal rigidities at the ZLB lead to investment hangover during the recovery. We show

how initial over-investment is likely to occur given the nature of productivity news we

think is relevant in the data. Boissay et al. (2016) offer a landmark quantitative analy-

sis of crises that follow credit booms. Similar to us, they focus on productivity as the

main driver of these cycles. Caramp (2017) shows how the interaction between adverse

selection and asset creation generates boom-bust cycles.

Our analysis is most closely related to Kiyotaki and Moore (1997), who extend the in-

sight from Bernanke and Gertler (1989) that changes in borrower net wealth and agency

costs create persistence in business cycles, to show that borrowing constraints also am-

plify business cycles precisely because the values of borrowers’ assets are pro-cyclical.

Kiyotaki and Moore (1997) consider a temporary shock to productivity that affects all

agents, but most importantly the shock increases the funds available to experts (“farm-

ers,” in their terminology). The initial increase in output leads experts to buy more

capital, increasing their output next period, and increasing asset prices next period. The

increase in future asset prices relaxes current collateral constraints, leading to amplifica-

tions in current output and asset prices that are an order of magnitude larger than would
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occur in a frictionless model. An extended version of the model with investment fea-

tures internal propagation mechanisms that can lead to credit cycles in response to the

aforementioned shock. However, when such models are estimated, the implied param-

eters generally do not generate quantitatively meaningful endogenous cyclical behavior.

In contrast, our model generates cyclical behavior in the baseline Kiyotaki and Moore

(1997) setup because of the timing and nature of the productivity shock. The bust fol-

lowing the shock is of the same order of magnitude as the initial shock itself and is not

driven by amplification mechanisms, but by reallocations that occur to the new sector

and following expansion by the main sector during the credit expansion.

Our paper relates to the literature on over-investment, which includes Caballero and

Krishnamurthy (2001), Lorenzoni (2008), He and Kondor (2016), and Korinek and Simsek

(2016). Closely related to our focus on collateral constraints, Akıncı and Chahrour (2018)

consider an open economy with occasionally binding collateral constraints and find that

positive productivity shocks increase leverage, thus increasing the probability of a future

Sudden Stop. On average good news is realized, but higher leverage exposes agents

to a greater risk that an unfavorable future shock will eventually lead the constraint to

bind. Our model considers a single positive productivity shock and does not rely on

the possibility of unfavorable future shocks. Bhattacharya et al. (2015) provide a model

of rational learning in which periods of good times leads to more optimism and greater

leverage. Eggertsson and Krugman (2012) assume a “Minsky moment” when borrowing

constraints suddenly tighten and study the aggregate consequences, and Simsek (2013)

considers how belief disagreements increase leverage. Farhi and Werning (2020) study

optimal coordination of monetary and macroprudential policy when Minsky cycles are

caused by excessive optimism (extrapolative expectations). Gorton and Ordonez (2020)

find support that financial cycles can be thought of as medium-run phenomena.

A growing body of empirical evidence supports the pattern of boom-bust investment

cycles as well as the predictability of asset price busts (or financial crises). A seminal

contribution is the important paper by Schularick and Taylor (2012), which assemble a

new historical data set to assess this predictability. Gulen et al. (2019) find that elevated

credit-market sentiment correlates with a boom in corporate investment over the sub-
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sequent year, followed by a long-run contraction. López-Salido et al. (2017) find that

elevated credit-market sentiment predicts lower GDP growth two years later. More re-

cently, Greenwood et al. (2020) find that financial crises are predictable, as in our paper.

2 The Model

The baseline model is identical to the model proposed by Kiyotaki and Moore (1997).

Our only addition to this standard building block is an anticipated technology shock to

an innovative sector. We introduce this shock in section 2.2 .

2.1 Baseline Model

Setup Time is discrete and infinite. The economy contains a single durable factor of

production, which we call capital. The aggregate supply of capital is fixed at K̄. Capital

trades at a price qt per unit of output.

There are two types of agents, experts and non-experts, who for simplicity have lin-

ear utility over consumption. Non-experts discount future consumption using discount

factor β (we underline non-expert variables). Experts are strictly more impatient.

Technology There are two types of production technologies. Non-experts have pro-

duction function G with decreasing returns to scale: a non-expert with kt units of capital

at t produces

y
t+1

= G(kt) (1)

units of output in t+ 1. Experts have linear technology: an expert with kt units of capital

at t produces

yt+1 = (a + c)kt (2)

units of output in t + 1, where akt units are tradable and can be used to purchase capital

but ckt units are non-tradable and must be consumed by experts. As in Kiyotaki and

Moore (1997), we suppose that c is sufficiently large relative to the experts’ discount
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factor so that experts will not consume any of the tradable output. As explained be-

low, experts are subject to a collateral constraint limiting their credit, which will bind in

equilibrium. We make assumptions on G so that, in equilibrium, experts’ marginal pro-

ductivity is above non-experts’ and thus the optimal allocation gives capital to experts.

Budget and Collateral Constraints All borrowing must be collateralized by capital.

Since experts are more productive and more impatient, experts will borrow from non-

experts in equilibrium. At date t an expert with capital kt can borrow up to the value of

the capital in t + 1, i.e.

Rbt ≤ qt+1kt, (3)

where R is the gross interest rate, bt is the amount borrowed, qt+1 is the future asset

price, and kt are present capital holdings. Because non-experts are unconstrained, their

discount factor pins down the rate to R = 1/β. An expert borrowing bt at interest rate

R must repay Rbt tomorrow. The capital tomorrow has value qt+1kt.

Given the assumptions, experts borrow up to the collateral constraint and use all

tradable output to buy capital. An expert’s budget constraint is

qtkt = (akt−1 + qtkt−1 − Rbt−1) + bt.

Plugging in for bt using the collateral constraint yields

kt =
(akt−1 + qtkt−1 − Rbt−1)

qt − qt+1
R

=
(akt−1 + qtkt−1 − Rbt−1)

ut
,

where ut ≡ qt − qt+1
R is the user cost or the down payment for a unit of capital.

Non-experts are not credit constrained, which means they will hold capital until the

marginal value of capital equals the opportunity cost R:

R =
G′(kt) + qt+1

qt
, =⇒ 1

R
G′(kt) = ut. (4)
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Aggregate Equations By linearity, we can aggregate by summing over experts to get

Kt =
1
ut

(aKt−1 + qtKt−1 − RBt−1) , (5)

Bt =
qt+1Kt

R
, (6)

where Kt and Bt are aggregate capital holdings and borrowing by experts. The user cost

is given by

ut =
1
R

G′(K̄− Kt). (7)

Total output is given by

Yt+1 = (a + c)Kt + G(K̄− Kt). (8)

In the steady-state equilibrium we have

u∗ = a, q∗ =
aR
r

, Ra = G′(K̄− K∗), Y∗ = (a + c)K∗ + G(K̄− K∗),

where r = R− 1 is the net interest rate. Thus, the tradable output just covers the interest

on experts’ debt, and the down payment equals the tradable output.

2.2 News Shocks to an Innovative Sector

Central to our boom-bust narrative is that the positive productivity shock leading to the

expansion affects some innovative or secondary sector. In light of the behavior of the

motivating events as discussed in the Introduction, we model this innovation as offering

temporarily higher productivity.3 Initially, this innovative sector is secondary to the most

productive uses of capital in the economy, though in reality the most productive uses

of capital may also benefit from this sector (examples include IT, innovations in housing

finance, or real estate more broadly).

Our goal is to present a simple model that can clarify the interaction of optimism

3Indeed, as discussed in the introduction, the evidence suggest that these episodes of major techno-
logical improvement or structural reform lead to a period of sustained higher growth, followed by sharp
reversals. Whether in the end the shock has permanent effects on the level of productivity, or not, does
not matter for our argument. What matters is that the increased growth is temporary.
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with capital reallocation, and how it has the ability to generate predictable financial

cycles. Since in reality there are many factors driving optimism, credit expansion, and

reallocation, we remain in this paper agnostic about how exactly to map the innovative

sector to any given episode. (In the conclusion, we offer a few thoughts about the

challenges and promises present when empirically testing the predictions of the theory.)

We prefer to interpret our model as highlighting the key mechanisms at play in these

events.

Accordingly, we model the productivity shock of interest as the temporary entrance

of an innovative technology.4 The innovative technology is a linear production function

yt+1 = aIkI
t , (9)

with a+ c > aI > Ra, and supserscript I denotes variables associated with the innovative

technology. The productivity of the innovative technology is higher than non-experts’

marginal productivity in steady state but possibly lower than the experts’.5

We suppose that in a future period t′, non-experts have access to this more-productive

innovative technology for one period. For simplicity, we suppose each non-expert has

access to the innovative technology but with a capacity constraint. Since the innovative

technology has a higher marginal product that G in steady state, non-experts will invest

as much as possible in the new technology. Hence, we directly specify the shock as

the quantity of capital K I that gets invested using the innovative technology. Aggregate

output at t′ is therefore given by

Yt′+1 = (a + c)Kt′ + aIK I + G(K̄− Kt′ − K I). (10)

Crucially, a credit expansion requires that future asset prices increase. For this reason,

4This is only for simplicity; we show that this can generalize to permanent shocks, as well.
5Since the innovative technology is run by non-experts, who are unconstrained, we need not distin-

guish between tradable and non-tradable production for the innovative technology. However, it is sensible
to suppose that akI

t units are tradable so that the innovative technology has the same marginal product
of tradable output as the expert technology. In reality, new technologies are often funded with leverage.
What matters for our analysis is not that they are funded by non-constrained agents, but that they are
separate from the initial experts. The shock could also represent a new set of entrants with wealth that
gets leveraged into innovative capital.
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at time t agents receive news of the future innovative technology at t′. Since in our main

specifications the technology is only available for one period, we refer to access to the

innovative technology in period t′ as as “the shock.”

2.3 Linearized Equilibrium

Similar to Kiyotaki and Moore (1997), we solve for the log-linearized dynamics around

the steady state. For a variable Xt, we denote log-deviations from steady state by

X̂t ≡ log(Xt) − log(X∗) where X∗ denotes the steady-state value. (We use the terms

“log-linearization” and “linearization” interchangeably.) Following the same notation

as Kiyotaki and Moore (1997), let 1/η denote the elasticity of the user cost to changes

in aggregate non-expert capital. By definition, η = − G′(K̄−K∗)
G′′(K̄−K∗)K∗ , where K∗ is capital

held by experts. It is a convenient normalization to directly define the demand shock

for innovative capital K̂ I as a fraction of experts’ steady-state capital holdings, i.e., total

capital demand K I = K∗K̂ I . Accordingly, we also define ẑ = K̂ I/η, which is the change

in non-experts’ marginal product (the change in G′) when shifting K I units of capital

away from their primary production technology and towards the innovative technology.

Asset Prices Since the behavior of asset prices is crucial for our story, we provide the

linearized equations for the asset price here to emphasize how the shock affects prices

each period. The remaining equations are in the appendix. Linearizing the non-experts’

optimality condition in equation (4) delivers

ût =
1
η

K̂t, ∀t 6= t′, and ût′ =
1
η

K̂t′ + ẑ, (11)

where K̂t is aggregate expert capital holdings and ẑ = K̂ I/η is the shock at t′. The only

mechanism affecting the user cost is the change in non-expert capital. In the absence

of the shock, non-experts hold less capital when experts hold more, and the user cost

increases since non-experts’ marginal productivity rises. However, in the period of the

shock t′, capital is allocated to the innovative technology and so non-experts have higher

marginal productivity when using G with less capital.
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From the definition of the user cost, we can write qt = ut +
qt+1

R . Linearizing we have

q̂t =
r
R

ût +
1
R

q̂t+1 =
r
R

∞

∑
s=0

βsût+s, (12)

where the last line follows from forward iteration.

Output and Aggregate Productivity Since the shock is an exogenous demand for cap-

ital, the dynamics of capital allocations and prices are independent of the innovative

productivity aI . However, output at the time of the shock depends critically on aI .

In this simple model aggregate capital is fixed, and thus fluctuations in output reflect

changes in productivity (i.e., changes in capital allocation). When t 6= t′, any change in

output next period is driven by changes in expert (non-expert) capital holdings:

Ŷt+1 = (a + c− Ra)
K∗

Y∗
K̂t. (13)

The percent change in output reflects the productivity difference between experts and

households a+ c− Ra, times the share of output their capital creates K∗
Y∗ times the change

in capital K̂t. At t′ + 1, output is also affected by the capital holdings of the innovative

sector at t′:

Ŷt′+1 = (a + c− Ra)
K∗

Y∗
K̂t′ + (aI − Ra)

K∗

Y∗
K̂ I . (14)

Output changes for two reasons: experts have additional capital K̂t′ , which increases

productivity relative to households by a + c − Ra, and the innovative sector has addi-

tional capital K̂ I , which increases productivity relative to households by aI − Ra, and

both terms are weighted by the capital share.

3 Baseline Results

For expositional clarity, our main results consider a one-time impulse shock at a time

t′. In this section we let the economy start in steady state at t = 0 and suppose that the

innovative technology is available in one period (t′ = 1).
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Section 4 considers when the shock occurs N > 1 periods forward (t′ = N) implying

a greater role for news and anticipation, and also considers persistent shocks. Section

5 discusses the robustness of our results by considering the role of news, expectations,

general equilibrium adjustments, and alternative sources of shocks. Appendix D shows

that under mild assumptions our results also hold when the interest rate is endogenous.

3.1 Dynamics for Shock in One Period, t′ = 1

We now consider the full general-equilibrium dynamics. After news of the shock has

been incorporated, experts’ borrowing in future periods equals the value of capital in the

next period. In contrast, at t = 0 news of the shock can increase the value of capital at

t = 0 so that it exceeds the debt that needs to be repaid (experts’ borrowing is inherited

from the previous period, which was determined before news of the shock). We can

unequivocally describe the deterministic behavior of capital and asset prices arising due

to the change in productivity happening at t = 1 as a result of the innovative sector.

Proposition 1. In response to a news shock at t regarding the productivity of the innovative

sector at t + 1, the economy experiences the following deterministic boom-bust dynamics:

1. An increase in the capital price at t = 1: q̂1 = rγβẑ > 0,

2. A boom at time t = 0: K̂0 = βγẑ > 0 and q̂0 = rβ2ẑ > 0,

3. A bust going forward: K̂s = γs(K̂0 − ẑ) < 0 for all s ≥ 1, with q̂s < 0 for all s ≥ 2.

The demand for capital from the innovative sector will increase the asset price at t = 1,

which relaxes collateral constraints at t = 0 and increases experts’ capital holdings right

away. Experts’ demand for capital at t = 0 increases the asset price and the user cost

above the steady state value. But this means that experts’ debt exceeds the sustainable

steady state level (in which ut = a). In contrast to Kiyotaki and Moore (1997), experts

are not more productive at t = 1 as a result of the shock. Experts have higher output

because they held more capital, but their debt burdens are even higher, and since the

user cost exceeds the value of their output, experts must sell capital at t = 1 in order to

repay their debts.
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Since experts’ debt is higher but their productivity is not, experts are forced to sell

capital to the innovative sector but also to non-experts, pushing their capital holdings be-

low the steady-state level. Once experts’ capital is below the steady state, experts slowly

rebuild capital as they pay off their debts. Accordingly, the economy will experience

a boom-bust cycle arising from the initial relaxation of constraints and the subsequent

tightening that forces experts to sell capital to non-experts.6

The following result is an immediate implication of equation (14) and the fact that K̂t

is independent of aI . Recall that output is subscripted one period forward, i.e., Ŷt+1 is

produced with K̂t.

Proposition 2. In response to a news shock at t = 0 regarding the productivity of the innovative

sector at t = 1, the economy experiences the following deterministic boom-bust dynamics: A

boom at time t = 0: Ŷ1 > 0; a bust going forward after the shock t ≥ 1: Ŷs+1 < 0 for all s ≥ 2;

furthermore, there exists a maximum productivity āI such that the economy experiences a bust at

t = 1 if and only if aI < āI .

Figure 1 illustrates the results. The figure plots the equilibrium dynamics for experts’

capital holdings, capital prices, and output next period in response to a shock ẑ = 1%

at t = 1.7 Capital initially increases and then falls at the time of the shock (in period

2), slowly returning to steady state. The capital price qt is above steady state for 2

periods before falling below steady state, while output next period falls below steady

state even in the time of the shock (since output is completely determined by variables

in the previous period, we choose to plot output next period as a function of time). As

a result, we have a divergence in output and capital prices when the shock hits: capital

prices remain above steady state even though output falls below.

Output and Welfare A crucial parameter for the boom-bust dynamics of output, or ag-

gregate productivity, is the productivity of innovative technology, aI , which determines

6Different from Kiyotaki and Moore (1997), we do not see amplification in response to a shock to
non-experts’ productivity. The increase in capital is of the same order of magnitude at ẑ, while the
increase in the capital price is an order of magnitude smaller. Thus, the model creates boom-bust, but not
amplification.

7We parameterize with α = 0.3, a = z = 0.3, c = 0.3, aI = 0.4, and R = 1.02. We calibrate the
steady-state expert share of capital to be 25% of total capital.
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Figure 1: Changes in expert capital K̂t, capital price q̂t , and output Ŷt+1 in response to
news at t = 0 of an innovative sector at t = 1

the severity of the boom or bust at t′ only. If aI is not so large compared to the produc-

tivity of the experts (if aI is sufficiently less than a + c), then the shock leads to output

below steady state at t′: experts hold less capital than steady state, and even though

the innovative technology is marginally more productive than G, aggregate productivity

falls because the innovative technology is so much less productive than experts’. How-

ever, if aI is sufficiently close to a + c (not necessarily more), aggregate productivity can

be above steady state at the time of the shock. The economy will still feature a boom-

bust cycle in output, with productivity falling below steady state in the periods after the

shock, but the boom will decline more slowly.

From equations (13) and (14), we can write the present value of the linearized changes

in output as

PV∆Y = β
∞

∑
s=0

βs (a + c− Ra)
K∗

Y∗
K̂s︸ ︷︷ ︸

Endogenous

+ β2(aI − Ra)
K∗

Y∗
K̂ I︸ ︷︷ ︸

Exogenous

, (15)

where a + c − Ra > 0 by the assumption on agents’ productivities and discounting
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reflects that capital at t produces output at t + 1. Note that there is a direct, exogenous

component given directly by the shock K̂ I , and an endogenous endogenous component

that is caused by the reallocation of capital in each period. Thus, it is sufficient to

characterize the present value of deviations in capital K̂t to solve for the present value

change in output.

Proposition 3. In response to a shock at time t = 1, the present value of the linearized changes in

output due to endogenous dynamics in K̂t is zero, i.e., PV∆Y = 0. In particular, ∑∞
s=0 βsK̂s = 0.

Thus, the present value of the linearized changes in total output (endogenous and exogenous) is

simply the consequence of the exogenous shock itself.

Welfare considerations are tricky because agents have different discount factors. How-

ever, in the limit as β→ β, the aggregate welfare consequences of the endogenous boom-

bust dynamics is zero: agents have linear utility and the present value of the boom is

exactly equal to the present value of the bust. There are positive welfare consequences

directly from the shock, which boosts productivity of at least some capital in that period.

Note that since the production function G is concave, the (linearized) deviations in cap-

ital would lead to a negative present value in output changes when taking into account

the concavity of non-expert production.

This linearized result does not mean that a constrained planner would be indiffer-

ent about responding to the news shock. The presence of collateral constraints create

pecuniary externalities (see Dávila and Korinek, 2017), and so a constrained planner

would likely desire to change the equilibrium, both in the steady state and in response

to the shock. For example, limiting borrowing would increase the level of capital held

by experts, increasing output (see Appendix C). It is likely that, as is common in these

models, the initial boom is inefficiently high, and welfare would improve if the initial

boom and therefore the following bust were both smaller, particularly if we considered

the non-linear equilibrium dynamics. Indeed, considering that the concavity of G im-

plies a present value loss of output immediately suggests a planner would choose to

mitigate the response to the shock.
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3.2 The Critical Role of General Equilibrium Effects

The nature of our reallocative technology shock and the general-equilibrium adjust-

ments in credit markets are crucial for our story. To clearly illustrate the critical role

of general-equilibrium adjustments in generating boom-bust dynamics, we now con-

sider two benchmarks that shut down general equilibrium dynamics: one eliminates

the role of news, and the second considers the partial-equilibrium consequences of a

news shock. Neither case produces a bust. We then contrast the mechanisms in the full

general-equilibrium case with these benchmarks.

Contemporaneous Shock, t′ = 0 The role of news working through credit markets is

critical for our story. Suppose that the shock occurs contemporaneously: the innovative

sector entered at t = 0 (no news). In this case, experts’ capital holdings would not

change even though the asset price would immediately increase.

Proposition 4. In response to a contemporaneous shock at t = 0 regarding the productivity of

the innovative sector at t = 0:

1. An increase in the capital price at t = 0: q̂0 = rβẑ > 0,

2. No change in expert capital holdings for all t: K̂t = 0 for all t,

3. No change in the capital price for all t > 0: q̂t = 0 for t > 0,

4. Output increases in t = 1 for exogenous reasons (higher non-expert productivity at t = 0)

and returns to steady state for all t > 1.

Demand for capital to use in the innovative technology increases the capital price and

output in the period of the shock, but there is no capital reallocation and therefore no

persistent effects of the shock.

The economy does not experience boom-bust dynamics if the shock is immediate.

The economy returns immediately to steady state and the only effects of the shock are

contemporaneous. In response to this contemporaneous shock, the asset price increases

at t = 0, increasing experts’ value of capital above the value of the debt they need
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to repay. This increases experts’ net worth, but since their increase in net worth is

driven purely by an increase in the asset price, there is no reallocation of capital. The

value of experts’ capital increases, but that does not enable them to buy more capital.

Since experts’ capital and debt were at steady state, the economy immediately returns

to steady state without the innovative technology: K̂t = 0 for all t ≥ 0, and thus q̂t = 0

for s > 0. Experts would not take on any additional debt and thus there would be no

contraction when the shock is gone.

Hence, a shock without news would lead to a completely transitory expansion. With-

out news, there is no opportunity for credit markets to fuel an unsustainable boom.

Thus, news is critical to getting an expansion as well as a contraction after the shock.

Partial-Equilibrium Responses for Shock in One Period, t′ = 1 We now consider

news: at t = 0 agents learn that the innovative sector will enter in t′ = 1. However, we

solve for the economy’s response without general equilibrium adjustments. Similar to

the case with a contemporaneous shock, the economy will experience a boom without a

bust. In this case credit markets will be active in fueling the initial boom, but the lack of

general equilibrium costs of reallocation will mean that the credit boom will not expand

debt beyond the sustainable level.

We consider the following partial equilibrium response as follows. We “assume

away” any general equilibrium dynamics at t = 1 by artificially setting K̂1 = 0, im-

plying also that K̂s = q̂s = 0 for all s > 1 as well. Define γ ≡
(

1 + 1
η

)−1
= η

1+η , which

reflects the price elasticity of non-expert demand for capital; γ < 1 since η > 0. The

pseudo-equilibrium can be characterized as follows.

Proposition 5. Consider a news shock at t = 0 regarding the productivity of the innovative

sector at t′ = 1, and consider a pseudo (partial) equilibrium response that artificially sets K̂1 = 0.

Then the economy features the following two-period boom:

1. An increase in the capital price at t = 0 and t = 1: q̂0 =
rβ2

γ ẑ > 0 and q̂1 = rβẑ > 0,

2. An increase in expert capital holdings at t = 0, K̂0 = βẑ > 0,
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3. Output increases in t = 1 for endogenous reasons (capital reallocation at t = 0) and in

t = 2 for exogenous reasons (higher non-expert productivity at t = 1) and returns to steady

state for all t > 2.

The demand for capital used for the innovative technology increases the capital price

at t = 1. The increase in the asset price at t = 1 relaxes the collateral constraint for

experts at t = 0, who can borrow more against the future value of capital. In contrast to

the previous case with a contemporaneous shock, experts do increase their initial capital

holdings because of relaxed credit markets. Thus, the economy would experience a

boom at t = 0 from higher expert capital, and also a boom at t = 1 from the reallocation

toward the innovative technology, and then return to steady state afterward.

As the full general-equilibrium dynamics make clear, the partial-equilibrium re-

sponse features no “real rigidities,” and so the initial booms do not require costly re-

allocation leading to a bust in following periods. There is an exogenous boom at t = 1

and an endogenous boom at t = 0, but the endogenous boom is not sustainable in

general equilibrium.

The Role of General Equilibrium The general equilibrium costs of reallocation are

crucial for a credit boom to expand beyond the sustainable level. It’s important to care-

fully consider these mechanisms, because at face value the initial boom appears to miti-

gate rather than cause the boom. In particular, linearizing the experts’ budget constraint

at t = 1, in equilibrium we have

K̂1 = γ
(
K̂0 − ẑ

)
,

which suggests that, all else equal, a higher K̂0 leads to higher K̂t for t > 0 and thus

a less severe bust. However, it is not the case that all else is equal. When we consider

the general-equilibrium consequences of the boom, it is clear that the boom is creating

the future bust through the effects of increased and unsustainable debt levels. While a

sufficiently high initial level of capital (a large boom) would annihilate the future bust,

it is not possible in equilibrium for credit markets to fuel such a boom in a sustainable
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way. The boom that does occur is fueled by unsustainable credit, which is why the bust

follows.

First, we saw in Proposition 4 that a contemporaneous shock implied no bust fol-

lowing the boom. Without news, experts have no ability to increase their capital hold-

ings precisely because credit markets do not relax. Second, if credit markets relax in a

“partial-equilibrium way,” the economy features a boom without a bust. Proposition 5

made clear that the pseudo-equilibrium features a larger boom and no bust. Indeed, the

initial boom in the pseudo-equilibrium of Proposition 5 is greater than the boom in the

general-equilibrium of Proposition 1. Hence, the larger boom in the pseudo-equilibrium

corresponds to no bust, but such a boom cannot be sustained in equilibrium.

It is instructive to consider how we can modify the underlying environment to bring

the partial- and general-equilibrium results together. First, suppose that γ = 1 (no

curvature in G).8 Then the capital allocations and prices at t = 0, 1 are the same in both

the pseudo-equilibrium and the general equilibrium. However, setting γ = 1 does not

completely undo the general-equilibrium results because in equilibrium K̂s = γs(K̂0 −

ẑ) < 0 for all s ≥ 1, which follows from the experts’ budget constraint. In other words,

even if the initial condition were set to K̂0 = βẑ, the economy would truly experience a

bust going forward because experts need to repay their increase in debt.

However, we can completely annihilate the bust if β = 1, which is a permissible

parameterization only in a finite-horizon model. In that case, then we have K̂0 = ẑ,

which would truly imply that K̂1 = 0 in equilibrium. The mechanisms in this case

are important to consider. In this case, experts can borrow the full change in future

capital prices without changing the price of capital today. Experts would borrow to

increase their capital holdings at t = 0 by ẑ and then at t = 1 sell the additional capital

for use in the innovative technology, returning their capital level to the steady-state.

Because there are no real rigidities from reallocation (γ = 1) and the interest rate on

debt is zero, experts can use credit to increase their capital holdings and repay their

debt even though they are not more productive in the future. Thus, the economy would

8Technically this would have to apply to period t = 0 only because if γ = 1 then η = ∞ and the shock
would have no effect on q1 because the capital price would be fixed and so ẑ = K̂ I/η = 0.
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experience a boom at t = 0 from higher expert capital, and also a boom at t = 1 from the

reallocation toward the innovative technology, and then return to steady state afterward.

Because the economy features no real rigidities, the initial booms would not require

costly reallocation leading to a bust in following periods.

To summarize, relaxed credit conditions make a boom possible, but the boom is not

sustainable in equilibrium. The frictions embedded in the economy are precisely why

the shock at t = 1 fuels an unsustainable boom at t = 0.

4 Prolonged Anticipation and Persistent Shocks

We now suppose that the innovative technology is available in N > 1 periods (t′ = N),

leading to prolonged anticipation of the reallocative technology shock. News about an

event further in the future will have distinct consequences for the size of the bust when

the reallocation of capital occurs at t = N. Finally, we consider a slowly-decaying AR(1)

shock. The results extend the insights from the previous two analyses using one-time

impulse shocks in the future. Appendix B.3 considers a permanent shock.

4.1 Dynamics for N-period Forward Shocks, t′ = N

We now consider the dynamics when agents receive news at time t = 0 that an innovative

technology will be available at time t = N. In contrast to the previous analysis, the initial

expansion will slowly decay (at a rate determined by the elasticity η) as experts repay

their debts from the initial expansion. However, the reallocation at t = N will have a

greater effect on the slump going forward since the boom will have dissipated.

Proposition 6. In response to a news shock at t = 0 regarding the innovative technology at

t = N, the economy experiences the following boom-bust dynamics:

1. An increase in the capital price at t = N: q̂N = rβẑ
(
(βγ)

N
+η−βη

1+η−βη

)
> 0,

2. A boom before t = N: K̂0 = ẑβNγ > 0 and K̂s > 0 for s < N, decaying at rate γ,

and q̂0 = rβN+1ẑ > 0, with q̂s > 0 for s < N + 1,
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3. A bust going forward: K̂N = −ẑγ(1− (βγ)N) < 0, decaying at rate γ, with q̂N+s <

0 for all s ≥ 1.

Both K̂0 and K̂N are decreasing in N, which implies a much larger slump when the

innovative sector enters. The initial boom is smaller because, due to the interest rate,

the effects of future increases in prices on relaxing collateral constraints gets discounted.

However, the reallocation K̂N at t = N becomes more negative because the initial boom

decays.

Figure 2 plots experts’ capital holdings and output in response to such a shock N

periods forward with N = 1, 3, 5. Note that the initial boom gradually decays, with

greater decay the longer forward is the true shock. Accordingly, the bust is more severe,

and the slump more prolonged, when the news is about events further in the future.

(Since β is close to 1, the initial boom is essentially the same across all cases.)
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Figure 2: Changes in expert capital and output in response to news of an innovative
sector at t = N, varying N.

The behavior of the economy in response to news about the future best illustrates

Minsky’s hypothesis. The boom declines in response to credit tightening: asset prices

22



gradually decline, tightening collateral constraints, and experts are forced to decrease

their capital holdings in response to tighter credit. The longer that credit tightening per-

sists, the less experts are able to hold on to capital when the innovative sector demands

it. As a result, there is a larger reallocation and a deeper, more persistent bust.

Because our model features perfect foresight in response to a one-time shock, the

counterfactual result from the model is that the boom is immediate and greatest at the

time of news. In reality, the economy appears to take time to learn about the news and

thus slowly adjust upward to the values plotted in Figure 2. A learning model as in

Blanchard, L’Huillier, and Lorenzoni (2013) or Cao and L’Huillier (2018) would improve

the dynamics of the model in this regard.

4.2 Persistent or Permanent Shocks

In this section we consider a slowly-decaying shock occurring at t = 1. In reality shocks

are likely to have a persistent component. Since the model is linearized, the dynamics

in response to a persistent shock are merely the sum of the dynamics in response to the

individual shocks, and therefore the response to a decaying shock combines the earlier

analyses. Considering a slowly decaying shock strengthens our results, leading to more

persistent busts following the boom. Appendix B considers shocks occurring further in

the future as well as permanent shocks.

Let’s suppose that starting at t = 1 the economy experiences an AR(1) decaying shock

ẑs = ρs−1, with ρ ∈ (0, 1). We have ẑ1 = 1 and then the shock decays at rate ρ going

forward. Then the initial capital boom is given by

K̂0 = βγ

(
1

1− βρ

)
> 0. (16)

Note that the shock to capital at t = 0 exceeds the initial shock (K̂0 > 1) if βγ > 1− βρ.

When this happens, K̂1 > 0 also. Note that we have for each s

K̂s = βγs+1

(
1

1− βρ

)
− γ

(
γs − ρs

γ− ρ

)
.
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Figure 3 plots the dynamics of capital and output for various levels of ρ. The higher

is ρ, the larger is the initial boom (since the present value of the shock is larger), and the

later is the eventual bust. However, for higher ρ the bust is more prolonged because the

reallocation of capital to the innovative sector lasts longer.

0 1 2 3 4 5 6 7 8 9

Time

-0.5

0

0.5

1

1.5

2

2.5

3

E
x
p
e
r
t
 
C
a
p
i
t
a
l

=0

=0.50

=0.90

(a) Expert Capital

0 1 2 3 4 5 6 7 8 9

Time

-0.05

0

0.05

0.1

0.15

0.2

0.25

O
u
t
p
u
t

=0

=0.50

=0.90

(b) Output

Figure 3: Changes in expert capital K̂t, and output Ŷt+1 in response to news at t = 1
decaying at rate ρ.

5 Discussion and Robustness

The nature of our reallocative technology shock and the general equilibrium adjustments

in credit markets are crucial for our story. We discuss these features in greater detail here.

5.1 Credit Frictions and Borrowing Constraints

Given the prominent role in our story of credit markets in fueling the boom, a reasonable

concern is whether the actual problem begins in credit markets directly. Perhaps our

proposed shock is a sideshow, so to speak, and what we should actually focus on instead
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is changes in credit markets. This is not the case. Indeed, what our story makes clear is

that it is the natural behavior of credit markets in propagating the shock, not in shocks

to credit markets, that produce the dynamics of the model.

Consider some financial friction limiting borrowing to less than the full value of

capital next period. For example, let the borrowing constraint be given by

Rbt = λtqt+1kt, (17)

where λt < 1. The budget constraint for experts is now

(
qt − βλtqt+1

)
Kt = aKt−1 + (1− λt−1)qtKt−1. (18)

With a constant λ, steady-state values are as follows:

q∗ =
a

λ(1− β)
=

Ra
λr

, u∗ =
a
λ

,

where ut = qt − βqt+1 as before. As shown in Appendix C, the boom-bust dynamics go

through with slight quantitative differences.

Including a tighter borrowing constraint allows us to emphasize the difference be-

tween technology shocks and a shock to the borrowing constraint, i.e. “financial shocks.”

Consider shocks to credit markets directly, which we model as a temporary increase in

λt. Let λ0 = λ(1 + λ̂) with λ̂ > 0, and λs = λ for s > 0. Such a shock temporarily

increases the flow of credit, reminiscient of a financial liberalization or expansion.

Proposition 7. In response to a shock regarding the collateral constraint, λ0 = λ(1 + λ̂) with

λ̂ > 0, and λs = λ for s > 0, the economy experiences the following deterministic dynamics:

1. A boom in expert capital at time t = 0: K̂0 = λλ̂
(

R−σ−Rσ/η′

r(R−λ)

)
> 0,

2. A bust in expert capital going forward: K̂1 = σλ
R−λ (σ− R) λ̂ < 0 and K̂s < 0 for all s > 1

returning to steady state at rate σ,

3. No change in capital price at t = 0 but depressed prices going forward: q̂0 = 0 and q̂s < 0

for all s ≥ 1.
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where σ ≡
(

1−βλ

1−λβ+λ(1−β)/η

)
= 1

1+ λr
(R−λ)η

< 1, λr
(R−λ)

< 1, σ > γ, and σ → γ as λ → 1.

Furthermore, if at t = 0 agents learn that the collateral constraint shock will occur at t = N,

then we have no dynamics until the shock occurs: K̂s = q̂s = 0 for s < N, and then dynamics at

t = N are given as above with q̂N = 0 and K̂N = λλ̂
(

R−σ−Rσ/η′

r(R−λ)

)
.

Thus, even though experts’ capital holdings increase at t = 0, the asset price does not

change, q̂0 = 0. Experts buy more capital because they can borrow more (the collateral

constraint is relaxed). Capital prices fall going forward since K̂s < 0 for s > 0. By a

similar exercise, the effect of λ̂ in the future is quite similar, with an important twist.

News of a future increase in λt has absolutely no effect on equilibrium until the shock

occurs. At that point, experts’ capital holdings increase but the capital price does not,

and then there is a bust (lower expert capital and capital prices) going forward.

The stylized dynamics of a “Minsky Cycle” match dynamics caused by news of a

reallocative technology shock, but not at all dynamics caused by a financial shock. Asset

price booms are an important part of the Minsky narrative, but, perhaps surprisingly,

a financial shock does not produce an asset boom at all, and instead the expansion of

debt simply depresses future asset prices. Additionally, there is no role for news with a

financial shock. The reallocative technology shock matches the Minsky narrative much

better than a financial shock does.9

5.2 News, Noise, and Reallocation

The shock we consider—news that primarily benefits agents other than the leveraged

experts—is critical for our story. As we have noted, the economy does not experience

boom-bust dynamics if the shock is immediate. If the innovative sector entered at t = 0

(no news), then experts’ capital holdings at t = 0 would not change even though the

asset price would immediately increase.
9An alternative potential way to model a shock directly to financial markets would be to consider a

temporary change in the discount rate of non-experts, β. A temporary increase in the discount factor
leads to an increase in the capital price, which relaxes borrowing constraints (if it occurs in the future)
and increases experts’ wealth (since they are leveraged). The equilibrium consequence of such a shock,
whether the shock is immediate or in the future, is a persistent boom in expert capital holdings and
the asset price. Thus, generating boom-bust dynamics requires a boom and bust in the shocks since a
temporary shock to β does not endogenously generate cycles.
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The boom-bust dynamics we describe are robust to whether or not the information is

truly news or just “noise.” We have modeled news about future innovative technology

as a real technology shock that actually transpires, but all that matters for our story to

get moving is positive expectations about future asset prices leading to a credit boom

today. Thus, we could just as easily tell our story using a “behavioral shock,” in which

agents’ expectations about the future increase, but perhaps in response to news that does

not transpire. To see this, consider when agents receive news at t of a technology shock

at t + 1, but the shock does not realize. Thus, agents enter the period with additional

capital K̂t and additional debt K̂t+1 + q̂t+1, derived earlier. We denote the equilibrium

prices and capital allocation going forward, once agents learn the shock does not in fact

realize, by ˆ̂q and ˆ̂K.

Proposition 8. Suppose the economy receive a news shock at t = 0 regarding the productivity

of the innovative sector at t = 1 of size ẑ, but at t = 1 the shock does not transpire (i.e. the size

of the shock is 0, in fact). Then the economy experiences the following deterministic boom-bust

dynamics from t = 1 onward:

1. Identical dynamics for experts capital for all periods: ˆ̂Ks = K̂s for all s > 0; accordingly

output dynamics are identical, except at t = 1 when output suffers (non-experts do not use

the innovative technology),

2. A price crash at t = 1: ˆ̂q1 = − r
Rη

(1−βγ)γẑ
1−βγ = − rβ

1+η ẑ < 0, whereas q̂1 > 0 if the shock

occurs,

3. Capital prices going forward are identical ˆ̂qs = q̂s for all s > 1.

An interesting extension to this result is to suppose that news is of a persistent AR(1)

shock with persistence ρ ∈ (0, 1). In this case we have K̂0 = βγ( 1
1−βρ ) and K̂1 = (βγ +

βρ − 1)( γ
1−βρ ), but we have ˆ̂K1 = (βγ − 1)( γ

1−βρ ) < K̂1 when agents realize that the

shock does not occur. In this case, because agents expect the shock to persist, there is a

very large initial increase in leverage by experts, and if ρ is sufficiently large the boom

continues into t = 1. When the shock fails to realize, there is an even larger deleveraging

leading to a decline in expert capital well below what would have otherwise occurred.
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In this case, the behavioral nature of the shock leads to an amplified bust relative to

the baseline. As a final consideration, if future asset prices are below the behavioral

expectation, the economy would likely also feature defaults since collateral constraints

would have been set on the expectation of higher collateral values making full debt

enforcement impossible.

An important class of behavioral expectations are diagnostic expectations in which

agents’ recent experience determine their beliefs regarding the future (Gennaioli and

Shleifer, 2010; Bordalo et al., 2018, 2019a). Bordalo, Gennaioli, Shleifer, and Terry (2019b)

use diagnostic expectations to examine the role of expectations in driving Minsky-type

credit cycles with predictable returns but also predictable prediction errors. In our

model, a tractable way to introduce diagnostic expectations is as follows. Suppose at

t = 0 the economy experiences a one-time shock ẑ but agents expect the shock to con-

tinue at a rate ρ going forward. The experience of a good shock at t = 0 leads agents

to suppose the good times will last. For simplicity, we suppose that at t = 1 agents

learn the truth that the shock is gone forever. With beliefs formed in this way, the dy-

namics of expert capital are nearly identical to the case when agents expect a persistent

shock that does not occur: K̂0 = βγ( ρ
1−βρ ) and K̂1 = (βγ + βρ− 1)( γρ

1−βρ ), but we have
ˆ̂K1 = (βγ− 1)( γρ

1−βρ ) < K̂1 when agents realize that the shock does not occur. As before,

diagnostic expectations amplify the boom-bust cycle in the main model. In summary,

behavioral assumptions would amplify our result.

Hence, our story that news of a positive technology shock to an innovative sector

produces boom-bust dynamics is very robust. Whether or not the technology shock

realizes, we get the identical dynamics for capital for leveraged investors. Of course

output and the asset price depend on whether the shock occurs or not. But as far as

our story about endogenous cycles, once agents get the news, the cyclical properties of

expert capital dynamics are already in motion. Whether the shock realizes later matters

for some things at t = 1, but either way the economy will experience a boom-bust cycle.

Importantly, that is not the case if news concerns the productivity of experts. Suppose

instead that agents learn at t = 0 that experts will be more productive at t = 1. Then it

really matters if the shock happens or not. Dynamics in this case are merely the main
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dynamics in Kiyotaki and Moore (1997) dampened by a factor β since the shock occurs

in the future: the experts’ capital holding increase immediately, as does the capital price.

However, the economy experiences a boom-bust cycle only if the shock doesn’t occur

at t = 1: agents expect the boom to continue at t = 1 because experts will have lots of

output from higher productivity to buy capital and repay their debts. But if productivity

is not higher, then they cannot repay their (higher) debts and they are forced to sell

capital. In this case, the cycle is not endogenous but the result of good news followed

by bad news. In contrast, news about an innovative technology endogenously produces

a cycle whether or not it is followed by “bad news” later.

6 Conclusion

Major boom-bust cycles exhibit large positive productivity shocks followed by sharp,

equally large reversals in productivity. We present a model in which news of a future

productivity boom in an innovative sector relaxes borrowing constraints immediately,

leading to a credit-filled boom. However, the expansion of credit is “not sustainable” and

requires a contraction of credit when the innovative sector is most productive, leading

to a slump in productivity going forward. These dynamics are more pronounced when

information regards innovations in the far future. The predictable boom-bust cycles

produced by reallocative technology shocks match the standard Minsky narrative in a

way that shocks to financial markets directly do not.

Our results have important implications for welfare and policy. We have intentionally

kept the model as simple and stripped-down as possible. Adding additional features

such as nominal rigidities or the zero-lower bound, as other papers do in greater detail

(see Rognlie, Shleifer, and Simsek, 2018; Farhi and Werning, 2020), would exacerbate

the welfare costs of the bust following the credit expansion, suggesting that the optimal

policy is to mitigate the initial expansion to mitigate the size of the bust.

A question that is triggered by our analysis is how can the predictions of the model be

tested in the data, and how to interpret particular episodes. Such an exercise is outside

of the scope of our contribution, however, we offer here some brief thoughts.
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There are two main challenges present for a researcher attempting to uncover the

dynamics that our theory describes. First, as discussed in earlier work, the identification

of major news shocks is a challenging exercise due to the presence of contemporaneous

transitory shocks to productivity (see Beaudry and Portier (2014) for a review of this

and other issues). Second, at first sight, the model could give the impression that these

dynamics would evolve rapidly. However, work by Cao and L’Huillier (2018) suggests

precisely the opposite, i.e., the presence of very slow-moving boom-bust cycles. A case

in point is the Great Recession, which can be plausibly interpreted as a medium-term

consequence of an original technological shock happening in the 1990s. This shock was

caused by the Information Technology that revolutionized communications and informa-

tion flows as known back then. The “new sector” is embodied in the rapid spread and

growth of technology startups, most of which flourished in the “Silicon Valley.” Clearly,

the simultaneous general-equilibrium movements of collateralized assets such as hous-

ing complicate the analysis, but the model and story offered by Cao and L’Huillier (2018)

offer a plausible reading of the macroeconomic unfolding of events. We leave the ques-

tion of how to tackle these empirical challenges for future work.
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Appendices for Online Publication

A Proofs

Proof of Proposition 1, Baseline Result. Linearizing the expert’s budget constraint at t = 0

yields equation (30). Linearizing the experts’ budget constraint in future periods yields

ûs+1 + K̂s+1 = K̂s for s > 0. At t = 1 the user cost is given by û1 = 1
η K̂1 + ẑ, and so we

have
1
η

K̂1 + ẑ + K̂1 = K̂0, =⇒ K̂1 = γ
(
K̂0 − ẑ

)
, (19)

where γ ≡ 1/
(

1 + 1
η

)
= η

1+η reflects the elasticity of non-expert demand for capital,

and γ < 1 since η > 0. For s > 1 the change in the user cost is determined entirely by

capital holdings since there is no shock, and so

(
1 +

1
η

)
K̂s = K̂s−1 =⇒ K̂s = γK̂s−1. (20)

Hence, for all s ≥ 1 we have

K̂s = γs (K̂0 − ẑ
)

.

From (12) we can write the capital price as

q̂0 =
r

Rη

∞

∑
s=0

βsK̂s + β
r
R

ẑ,
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where the ẑ term reflects that the user cost at t = 1 contains the shock. In order to plug

in for q̂0, we execute the following manipulations:

q̂0 =
r

Rη

∞

∑
s=0

βsγs (K̂0 − ẑ
)
+

r
R

1
η

ẑ + β
r
R

ẑ,

R
r

q̂0 =
1
η

(
1

1− βγ

) (
K̂0 − ẑ

)
+ ẑ

(
β +

1
η

)
,

Rη

r
q̂0 =

(
1

1− βγ

)
K̂0 − ẑ

(
1

1− βγ
− βη − 1

)
.

Plugging in for q̂0 from the budget constraint, we have

(1 + η)K̂0 =

(
1

1− βγ

)
K̂0 − ẑ

(
βγ

1− βγ
− βη

)
,

(1 + η)K̂0 =

(
1

1− βγ

)
K̂0 + ẑβ

(
η − γ

1− βγ

)
,(

1 + η − 1
1− βγ

)
K̂0 = ẑβγ

(
1 + η − 1

1− βγ

)
,

K̂0 = ẑβγ.

And so, K̂0 > 0. Additionally we have K̂1 = −ẑγ(1− βγ) < 0. Thus, using (20), we

also have K̂s < 0 for all s > 0.

From the budget constraint at t = 0, we have that the asset price is given by

R
r

q̂0 =

(
1 +

1
η

)
ẑβγ =⇒ q̂0 = rβ2ẑ.

Since K̂s < 0 for all s > 0, it follows that q̂s < 0 for all s > 0.

Finally, we can write the capital price at t = 1 as

q̂1 =
r
R

(
∞

∑
s=0

βs K̂s+1

η
+ ẑ

)
=

r
R

(
∞

∑
s=0

(γβ)s γ(K̂0 − ẑ)
η

+ ẑ

)
,
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where K̂s = γs(K̂0 − ẑ). Taking the infinite sum, we have

q̂1 =
r
R

(
γ

η

K̂0 − ẑ
1− βγ

+ ẑ

)
=

r
R

(
γ

η

(βγẑ)− ẑ
1− βγ

+ ẑ

)
,

=
r
R

(
−γ

η

ẑ(1− βγ)

1− βγ
+ ẑ

)
=

r
R

(
−γ

η
ẑ + ẑ

)
,

= rβγẑ,

and hence q̂1 > 0. Equivalently, we can manipulate equation (30) by using û0 = ηK̂0 to

write (1 + η)û0 = R
r q̂0. Plugging into the asset price equation q̂0 = r

R û0 + βq̂1 we can

write the recursion

q̂0 =
1

1 + η
q̂0 + βq̂1 =⇒ q̂1 =

γ

β
q̂0.

Note that again we have q̂1 = γ
β rβ2ẑ = rβγẑ.

Proof of Proposition 2, Output boom-bust. The result follows immediately from equations

(13)–(14) and Proposition 1. When t 6= t′ the change in output is determined entirely by

the change in K̂t. In the period of the shock, we have

Ŷt′+1 = (a + c− Ra)
K∗

Y∗
K̂t′ + (aI − Ra)

K∗

Y∗
K̂ I ,

Output booms in t′ + 1 if

(a + c− Ra)K̂t′ + (aI − Ra)K̂ I > 0.

Since K̂t′ < 0, we have a boom in Ŷt′+1 if aI is sufficiently large and otherwise we have a

bust in output.

Proof of Proposition 3, PV of Endogenous Output Changes. Since capital converges to steady

state at a rate of γ from t = 1 on, the present value of output changes from t = 1 on is

PV∆Y1 =
K̂1

1− βγ
, (21)
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where this represents a loss since K̂1 < 0 in equilibrium. This means that the total

present value of changes from t = 0 is

PV∆Y0 = K̂0 + β
K̂1

1− βγ
. (22)

Using that K̂1 = γ(K̂0 − ẑ) we have

PV∆Y0 =K̂0 + β
γ(K̂0 − ẑ)

1− βγ
,

=
K̂0 − βγẑ

1− βγ
,

=0,

since K̂0 = βγẑ in equilibrium.

Proof of Proposition 4, Contemporaneous Shock. Since the shock is contemporaneous, we have

û0 = 1
η K̂0 + ẑ and ût =

1
η K̂t for t > 0. From (12) we can write the capital price as

q̂0 =
r

Rη

∞

∑
s=0

βsK̂s +
r
R

ẑ,

where the ẑ term reflects that the user cost at t = 0 contains the shock. Linearizing the

experts’ budget constraint in future periods yields ûs+1 + K̂s+1 = K̂s for s ≥ 0, and so

we have

K̂s = γsK̂0 (23)

where γ ≡ 1/
(

1 + 1
η

)
= η

1+η reflects the elasticity of non-expert demand for capital,

and γ < 1 since η > 0. Plugging (23) into the equation for the asset price, we have

q̂0 =
r

Rη

∞

∑
s=0

βsγsK̂0 +
r
R

ẑ,

=
r

Rη

(
1

1− βγ

)
K̂0 +

r
R

ẑ.
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Linearizing the experts’ budget constraint at t = 0 we have K̂0 + û0 = R
r q̂0, which

becomes (
1 +

1
η

)
K̂0 + ẑ =

R
r

q̂0 =⇒ K̂0 = γ

(
R
r

q̂0 − ẑ
)

.

Plugging in for q̂0 above, we have

K̂0 = γ

(
R
r

(
r

Rη

(
1

1− βγ

)
K̂0 +

r
R

ẑ

)
− ẑ

)
,

= γ

(
1
η

(
1

1− βγ

)
K̂0 + ẑ− ẑ

)
,

=
γ

η

(
1

1− βγ

)
K̂0,

which clearly implies that K̂0 = 0. Together with (23), this implies K̂t = 0 for all t ≥ 0,

and thus ût = 0 for t > 0. Since the asset price is the present value of the user cost, q̂t = 0

for t > 0. Finally, since the capital allocation is unchanged for all t, the only change in

output comes from the shock at t = 0.

Proof of Proposition 5, pseudo-equilibrium without general-equilibrium adjustments. Given our

assumption that K̂1 = 0, (23) implies K̂t = 0 for all t > 1. The increase in the initial capi-

tal price can be written

q̂0 =
r

Rη
K̂0 + β

r
R

ẑ.

The initial budget constraint can be written K̂0 = γ R
r q̂0 and hence

q̂0 =
r

Rη
γ

R
r

q̂0 + β
r
R

ẑ,

=
1

1 + η
q̂0 + β

r
R

ẑ,

γq̂0 = β2rẑ,

which delivers the result. The capital price at t = 1 follows immediately since K̂t = 0 for

t > 1 and thus the only change in the asset price comes from the shock at t = 1.
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The capital reallocation at t = 0 leads to an increase in output the next period, and

the exogenous increase in productivity due to the shock at t = 1 increases output in the

period after.

Proof of Proposition 6, N-forward News. The key equations are the same as before, with the

exception of the budget constraint and user cost at t = N instead of at t = 1. At time

t = N, non-experts anticipate a higher marginal productivity of capital, so the user cost

is given by

ûN =
1
η

K̂N + ẑ, (24)

hence have

K̂N = γ
(
K̂N−1 − ẑ

)
. (25)

For 0 ≤ s < N,

K̂s = γsK̂0, (26)

and for s ≥ N,

K̂s = γsK̂0 − γs+1−N ẑ, (27)

Finally, since the capital price is the discounted sum of future user costs, we have

q̂0 =
r

Rη

∞

∑
s=0

βsK̂s + βN r
R

ẑ. (28)

We then plug (26) and (27) into (28) and solve.

q̂0 =
r

Rη

∞

∑
s=0

βsK̂s + βN r
R

ẑ,

R
r

q̂0 =
1
η

∞

∑
s=0

βsγsK̂0 −
1
η

∞

∑
s=N

βsγs+1−N ẑ + βN ẑ,

Rη

r
q̂0 =

K̂0

1− βγ
+

ẑ
RN

(
− γ

1− βγ
+ η

)
,

Rη

r

q̂0 =
K̂0

1− βγ
− ẑ

RN−1

(
1

1− βγ
− η

R
− 1

)
.

We now consider the following lemma.
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Lemma 1. If the capital price at t = 0 can be written

q̂0 =
r

Rη

(
1

1− βγ
K̂0 + Xη

)
, (29)

for some X. Then in equilibrium K̂0 =
X(1−βγ)

1−β .

Proof. Linearizing the budget constraint at t = 0 yields K̂0 + û0 = R
r q̂0, which becomes

K̂0(1 + η) =
Rη

r
q̂0 =⇒

(
1 +

1
η

)
K̂0 =

R
r

q̂0. (30)

Plugging in the proposed capital price and solving for K̂0 yields the solution.

From Lemma 1 this implies

(31)

It then follows from R
r q̂0 =

(
1 + 1

η

)
K̂0 that

q̂0 = rβN+1ẑ. (32)

From (27) we have

K̂N = γNK̂0 − γẑ =⇒ K̂N = −γẑ
(

1−
(

βγ
)N
)
< 0. (33)

Finally, we can write the capital price at t = N as

q̂N =
r
R

(
∞

∑
s=0

βs K̂s+N

η
+ ẑ

)
=

r
R

(
∞

∑
s=0

(βγ)s K̂N

η
+ ẑ

)
.
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We then use K̂N = −γẑ
(

1−
(

βγ
)N
)

. Taking the infinite sum, we have

q̂N =
r
R

−γ

η

ẑ
(

1−
(

βγ
)N
)

1− βγ
+ ẑ

 = rβẑ

− 1
1 + η

(
1−

(
βγ
)N
)

1− βγ
+ 1

 ,

= rβẑ


(

βγ
)N
− 1

1 + η − βη
+ 1

 = rβẑ


(

βγ
)N
− 1 + 1 + η − βη

1 + η − βη

 ,

= rβẑ


(

βγ
)N

+ η − βη

1 + η − βη

 > 0.

Proof of Proposition 8, Behavioral Shocks. Note that the linearized budget constraint at t =

1 becomes

ˆ̂u1 +
ˆ̂K1 = K̂0 +

R
r
( ˆ̂q1 − q̂1

)
,

reflecting that capital and debt were predetermined. It’s useful to re-write this as

(
1 +

1
η

)
ˆ̂K1 =

R
r

ˆ̂q1 + Z, (34)

where Z ≡ K̂0 − R
r q̂1 = βγẑ− R

r rβγẑ = −γ(1− β)ẑ. It is as if experts face a negative

productivity shock. They have more capital than steady state, K̂0 > 0, but also more debt,

q̂1 > 0, and the additional debt weighs on available funds by more than the additional

output from higher capital.

We can write the capital price, which is the discounted value of future user costs, as

ˆ̂q1 =
r

Rη

ˆ̂K1

1− βγ
.

40



Plugging into the budget constraint, we therefore have

(
1 +

1
η

)
ˆ̂K1 =

1
η

ˆ̂K1

1− βγ
+ Z,

(1 + η) (1− βγ) ˆ̂K1 = ˆ̂K1 + η(1− βγ)Z,

ˆ̂K1 =
η(1− βγ)

(1 + η) (1− βγ)− 1
Z,

ˆ̂K1 =
η(1− βγ)

1 + η − βη − 1
Z,

ˆ̂K1 =
η(1− βγ)

η(1− β)
Z,

ˆ̂K1 = −
(1− βγ)

(1− β)
γ(1− β)ẑ,

ˆ̂K1 = −(1− βγ)γẑ = K̂1.

Hence, the experts’ capital holdings in the new equilibrium is exactly as it would have

been. The asset price, however, is lower

ˆ̂q1 = − r
Rη

(1− βγ)γẑ
1− βγ

= −
rβ

1 + η
ẑ < 0.

Recall that q̂1 > 0.

News about expert productivity Finally, suppose that at t = 0 agents learn that experts

will have additional productivity ∆ at t = 1. We can write the asset price at t = 1 as a

function of capital at t = 1 as

q̂1 =
r

Rη

(
1

1− βγ

)
K̂1.

Plugging in for the value of capital at t = 1 we have

q̂1 =
r

Rη

(
1

1− βγ

) (
γ∆ + γK̂0

)
=

r
Rη

(
γ

1− βγ

) (
∆ + K̂0

)
.
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From the equation for the asset price at t = 0, we have

q̂0 =
r

Rη
K̂0 +

r
Rη

(
βγ

1− βγ

) (
∆ + K̂0

)
=

r
Rη

(
1

1− βγ

)
K̂0 +

r
Rη

(
βγ

1− βγ

)
∆.

Plugging in the budget constraint at t = 0, we have

K̂0 =

(
1

r(1 + η)

)
∆,

Plugging this value into the budget constraint equation to get the asset price at t = 0,

we have

q̂0 =

(
β

η

)
∆,

and then we have

q̂1 =
R

1 + 1
η

(
β

η

)
∆ =

∆
1 + η

.

Finally, we have

K̂1 = γ∆ + γ

(
1

r(1 + η)

)
∆ = γ

(
1 +

1
r(1 + η)

)
∆.

Plugging in q̂1 and K̂0 into equation (34) it is clear that we end up with ˆ̂K1 < 0 < K̂1

implying different capital dynamics.

B Persistent Shocks

We first consider persistent decaying shocks (AR(1)) and then a permanent shock.

B.1 Persistent Shock Beginning at t = 1

Let’s suppose that starting at t = 1 the economy experiences an AR(1) decaying shock

ẑs = ρs−1, with ρ ∈ (0, 1). We have ẑ1 = 1 and then the shock decays at rate ρ going
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forward. Accordingly, for s > 0 we have the user cost

ûs =
1
η

K̂s + ẑs.

Capital dynamics are as follows. Linearizing budget constraints for s > 0 we have

K̂s+1 = γ
(
K̂s − ẑs+1

)
.

We solve the model as before, plugging these conditions into the two key equations at

t = 0: The budget constraint at is given by

K̂0 = γ
R
r

q̂0,

and the asset price is

q̂0 =
r
R

∞

∑
s=0

βsûs =
r
R

∞

∑
s=0

βs
(

1
η

K̂s + ẑs

)
,

keeping in mind that ẑ0 = 0.

Iterating forward the equation for capital dynamics, we have

K̂s = γsK̂0 −
s

∑
i=1

γs+1−i ẑi = γsK̂0 −
s

∑
i=1

γs+1−iρi−1 = γsK̂0 − γs
s

∑
i=1

(ρ/γ)i−1,

and summing yields

K̂s = γsK̂0 − γs
1−

(
ρ
γ

)s

1− ρ
γ

= γsK̂t − γ

(
γs − ρs

γ− ρ

)
.

Plugging into the equation for the asset price, we have
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q̂0 =
r
R

(
∞

∑
s=0

βs
(

1
η

K̂s

)
+

∞

∑
s=1

βsẑs

)
,

=
r
R

(
∞

∑
s=0

βs 1
η

(
γsK̂0 − γ

(
γs − ρs

γ− ρ

))
+

∞

∑
s=1

βsρs−1

)
,

=
r
R

(
1
η

1
1− βγ

K̂0

)
+

r
R

(
β

1− βρ

)
− r

R
1
η

γ

γ− ρ

(
∞

∑
s=0

(βγ)s − (βρ)s

)
,

=
r
R

(
1
η

1
1− βγ

K̂0

)
+

r
R

(
β

1− βρ

)
− r

R
1
η

γ

γ− ρ

(
1

1− βγ
− 1

1− βρ

)
,

From Lemma 1 with X =
βγ(1−β)

(1−βγ)(1−βρ)
we have

K̂0 = βγ

(
1

1− βρ

)
> 0.

B.2 Persistent Shock Beginning N Periods Forward, t′ = N

Now suppose the shock starts at t = N, ẑs = ρs−N for s ≥ N and ẑs = 0 for s < N.

Accordingly, for s > 0 we have the user cost

ûs =
1
η

K̂s + ẑs.

Capital dynamics are as follows. Linearizing budget constraints for s > 0 we have

K̂s+1 = γ
(
K̂s − ẑs+1

)
,

keeping in mind that the shock is zero for s < N.

We solve the model as before, plugging these conditions into the two key equations

at t = 0: The budget constraint is given by

K̂0 = γ
R
r

q̂0,
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and the asset price is

q̂0 =
r
R

∞

∑
s=0

βsûs =
r
R

∞

∑
s=0

βs
(

1
η

K̂s + ẑs

)
,

keeping in mind that ẑs = 0 for s < N.

Iterating forward the equation for capital dynamics, we have: for 0 ≤ s < N, K̂s =

γsK̂0 and then also

K̂N+s = γs+NK̂0 −
s

∑
i=0

γs+1−i ẑi = γs+NK̂0 −
s

∑
i=0

γs+1−iρi = γs+NK̂0 − γs+1
s

∑
i=0

(ρ/γ)i.

Summing yields

K̂N+s = γs+NK̂0 − γs+1
1−

(
ρ
γ

)s+1

1− ρ
γ

= γs+NK̂0 − γ

(
γs+1 − ρs+1

γ− ρ

)
,

implying for s ≥ N we can write

K̂s = γsK̂0 − γ

(
γs+1−N − ρs+1−N

γ− ρ

)
,

Plugging into the equation for the asset price, starting the shock at t = N, we have

q̂0 =
r
R

(
∞

∑
s=0

βs
(

1
η

K̂s

)
+

∞

∑
s=N

βsẑs

)
,

=
r
R

(
∞

∑
s=0

βs 1
η

γsK̂0 +
∞

∑
s=N

βs
(

ρs−N − γ

η

(
γs+1−N − ρs+1−N

γ− ρ

)))
,

=
r
R

(
1
η

1
1− βγ

K̂0

)
+

r
R

(
βN

1− βρ

)
− r

R
1
η

γ

γ− ρ

(
∞

∑
s=N

γ1−N(βγ)s − ρ1−N(βρ)s

)
,

=
r
R

(
1
η

1
1− βγ

K̂0

)
+

r
R

(
βN

1− βρ

)
− r

R
1
η

γ

γ− ρ

(
βNγ

1− βγ
−

βNρ

1− βρ

)
,
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Note that we now have X =
βNγ(1−β)

(1−βγ)(1−βρ)
. From Lemma 1 we have

K̂0 = βNγ

(
1

1− βρ

)
> 0.

Figures 4 and 5 plots the dynamics of capital and output, varying N = 1, . . . , 5 for

ρ = 0.5 and ρ = 0.9.
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Figure 4: Changes in expert capital and output in response to news at t = N, varying N,
decaying at rate ρ = 0.5.

B.3 Permanent Shock

Suppose that the shock ẑ occurs in every period after t = 1. The key equations are

K̂0 = γ
R
r

q̂0, q̂0 =
r
R

∞

∑
s=0

βsûs, K̂s+1 = γ(K̂s − ẑ). (35)
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Figure 5: Changes in expert capital and output in response to news at t = N, varying N,
decaying at rate ρ = 0.9.

Note that the last equation implies that

K̂N = γNK̂0 − ẑ
N

∑
s=1

γs = γNK̂0 − ẑ
γ− γN+1

1− γ
. (36)

For s > 0 we have

ûs =
1
η

K̂s + ẑ,

and so the asset price can be written

q̂0 =
r
R

(
∞

∑
s=0

βs
(

1
η

K̂s

)
+

∞

∑
s=1

βsẑ

)
,

=
r
R

(
∞

∑
s=0

βs
(

1
η

γsK̂0

)
+

∞

∑
s=1

βs
(
−ẑ

1
η

γ− γs+1

1− γ
+ ẑ
))

,
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From Lemma 1 we have

K̂0 = ẑ
βγ

1− β
= ẑ

γ

r
> 0.

Note that asymptotically K̂s → −ẑ γ
1−γ = −ηẑ. We converge back to the original

steady state price q∗, but first the price rises and experts hold more capital because

collateral constraints are relaxed. But the price converges back to the steady state, and

experts hold less capital, consistent with non-experts’ increased productivity.

C Tight Borrowing Constraints

Let the borrowing constraint be given by

Rbt = λtqt+1kt, (37)

where λt < 1. The budget constraint for experts is now

(
qt − βλtqt+1

)
Kt = aKt−1 + (1− λt−1)qtKt−1. (38)

With a constant λ ≥ a
a+c , steady-state values are as follows:

q∗ =
a

λ(1− β)
=

Ra
λr

, u∗ =
a
λ

,

where ut = qt − βqt+1 as before. The collateral constraint is binding so long as λ ≥ a
a+c .

Note that u∗ = a
λ , which is higher than the user cost in the baseline model when experts

can borrow the full value of capital. Since the non-experts’ marginal cost cannot exceed

a + c in equilibrium, this equilibrium regime holds so long as λ ≥ a
a+c . Note that a

tighter λ leads to a more efficient allocation of capital.

We first reconsider the main results in the paper, which are quantitatively dampened

if λ < 1 but otherwise the same, and then consider shocks to λt. We refer to shocks to λt

as “financial shocks.” Our main findings are that the consequences of financial shocks
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are quite distinct from the consequences of technology shocks.

C.1 Technology Shocks

We first consider a technology shock ẑ as before.

Proposition 9. In response to a news shock at t = 0 regarding the productivity of the innovative

sector at t = 1, the economy experiences the following deterministic boom-bust dynamics:

1. A larger increase in capital prices at t = 1: q̂1 = rσβẑ > rγβẑ,

2. A dampened boom at time t = 0: K̂0 = β

(
η

1+( R−λ
rλ )η

)
ẑ < βγẑ, and q̂0 = rβ2ẑ > 0

(same),

3. A dampened but prolonged bust going forward: K̂1 = −σ
(

rλ
R−λ

) (
1− βσ

)
ẑ > −γ(1−

βγ)ẑ, and K̂s = σs
(

K̂t+s−1 − ẑ
(

λr
R−λ

))
< 0 for all s ≥ 1, and q̂s+1 < 0 for all s ≥ 1,

where σ ≡
(

1−βλ

1−λβ+λ(1−β)/η

)
= 1

1+ λr
(R−λ)η

< 1, λr
(R−λ)

< 1, σ > γ, and σ→ γ as λ→ 1.

The tighter borrowing constraint has two consequences for dynamics. First, the initial

response is dampened because experts are less leveraged and thus credit markets have

less of a role in propagating shocks. The result extends analogously when considering

news N periods forward, multiplying the initial capital deviations by βN as in the main

model. Second, deviations from steady state are more persistent (σ > γ) and so it takes

longer to recover from the bust. However, the bust is not so severe.

Proof of Proposition 9. We first log-linearize the budget constraint at t = s when there is

no technology shock. In this case, debt is set with perfect foresight and we have

K̂s = σK̂s−1, (39)

where σ ≡
(

1−βλ

1−λβ+λ(1−β)/η

)
= 1

1+ λr
(R−λ)η

< 1. We can define η′ ≡ (R−λ)η
rλ and then we

have σ = 1
1+ 1

η′
= η′

1+η′ , analogous to the definition of γ. Note that σ → γ as λ → 1 and

that σ > γ since λr
(R−λ)

< 1.
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In the period with the technology shock we instead would have

λ(1− β)
(
K̂s/η + ẑ

)
+ K̂s(1− λβ) = K̂s−1(λ(1− β) + 1− λ),

K̂s(1− λβ + λ(1− β)/η) = K̂s−1(1− βλ)− λ(1− β)ẑ,

K̂s = K̂s−1

(
1− βλ

1− λβ + λ(1− β)/η

)
− ẑ

(
λ(1− β)

1− λβ + λ(1− β)/η

)
,

which we can write as

K̂s = σ

(
K̂s−1 − ẑ

(
λ(1− β)

1− λβ

))
= σ

(
K̂s−1 − ẑ

(
λr

R− λ

))
. (40)

Since λr
R−λ < 1, it is as if the shock enters in a smaller way compared to the baseline

model (i.e., with λ = 1).

Finally, we log-linearize the budget constraint at t = 0. We can write the budget

constraint as

K̂0

(
1− βλ + λ(1− β)/η

)
= λq̂0, (41)

which we can write as

K̂0 = σ
λ

1− βλ
q̂0. (42)

or equivalently,

K̂0

(
1 +

(R− λ)η

rλ

)
= K̂0

(
1 + η′

)
=

Rη

r
q̂0,

With the shock occurring at t = 1, for all s ≥ 1 we have

K̂s = σs

(
K̂s−1 − ẑ

(
λ(1− β)

1− λβ

))
= σs

(
K̂s−1 − ẑ

(
λr

R− λ

))
.

From (12) we can write the capital price as

q̂0 =
1− β

η

∞

∑
s=0

βsK̂s + β(1− β)ẑ,

where the ẑ term reflects that the user cost at t = 1 contains the shock. In order to plug
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in for q̂0, we execute the following manipulations:

q̂0 =
r

Rη

∞

∑
s=0

βsσs

(
K̂0 − ẑ

(
λ(1− β)

1− λβ

))
+

r
R

1
η

ẑ

(
λ(1− β)

1− λβ

)
+ β

r
R

ẑ,

R
r

q̂0 =
1
η

(
1

1− βσ

)(
K̂0 − ẑ

(
λ(1− β)

1− λβ

))
+ ẑ

(
β +

1
η

(
λ(1− β)

1− λβ

))
,

Rη

r
q̂0 =

(
1

1− βσ

)
K̂0 − ẑ

(
1

1− βσ

(
λ(1− β)

1− λβ

)
− βη −

(
λ(1− β)

1− λβ

))
,

Rη

r
q̂0 =

(
1

1− βσ

)
K̂0 − ẑβ

(
σ

1− βσ

(
λ(1− β)

1− λβ

)
− η

)
,

Rη

r
q̂0 =

(
1

1− βσ

)
K̂0 − ẑβ

(
σ

1− βσ

(
rλ

R− λ

)
− η

)
,

Rη

r
q̂0 =

(
1

1− βσ

)
K̂0 − ẑ

(
rλ

R− λ

)
β

(
σ

1− βσ
− η

(
R− λ

rλ

))
.

Note that we can write the budget constraint in equation (42) as

K̂0
(
1 + η′

)
=

Rη

r
q̂0.

Hence we can write

K̂0
(
1 + η′

)
=

(
1

1− βσ

)
K̂0 − ẑ

(
rλ

R− λ

)
β

(
σ

1− βσ
− η

(
R− λ

rλ

))
,

which is identical to the result from earlier with η′ replacing η, σ replacing γ, and ẑ

multiplied by
(

rλ
R−λ

)
. Since σ = 1

1+1/η′ , we can therefore solve out to get

K̂0 = βσẑ
(

rλ

R− λ

)
= β

 η

1 +
(

R−λ
rλ

)
η

 ẑ < βγẑ, (43)

where the final inequality follows because R−λ
rλ > 1 and γ = η

1+η . From the budget

constraint we have
Rη

r
q̂0 = K̂0

(
1 + η′

)
=⇒ q̂0 = rβ2ẑ.
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Plugging K̂0 (1 + η′) = Rη
r q̂0 into the asset price equation q̂0 = r

R û0 + βq̂1 we can

write the recursion

q̂0 =
1

1 + η′
q̂0 + βq̂1 =⇒ q̂1 =

σ

β
q̂0.

Note that we have q̂1 = σ
β rβ2ẑ = rβσẑ.

Additionally, we have

K̂1 = −σ

(
rλ

R− λ

)(
1− βσ

)
ẑ > −γ(1− βγ)ẑ, (44)

which is closer to zero than we get when λ = 1.

C.2 Proof of Proposition 7, Financial Shocks

Proof of Proposition 7. Log-linearizing the budget constraint at t = 0, we have

q∗K∗(q̂0 + K̂0)− βλq∗K∗(q̂1 + K̂0 + λ̂0) =1q∗q̂0K∗,

where the RHS reflects that debt equals λq∗K∗ and capital is predetermined. Rearranging

and collecting terms we have

(q̂0 + K̂0)− βλ(q̂1 + K̂0 + λ̂0) =q̂0,

λq̂0 − βλq̂1 + K̂0(1− βλ) =λq̂0 + βλλ̂0,

K̂0

(
1− βλ + λ(1− β)/η

)
=λq̂0 + βλλ̂0,

which we can write as

K̂0
(
1 + η′

)
=

Rη

r
q̂0 +

η

r
λ̂0. (45)

Next, consider the budget constraint at t = 1. In this case, debt is set with perfect
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foresight and we have

q∗K∗(q̂1 + K̂1)− βλq∗K∗(q̂2 + K̂1) =aK∗K̂0 + q∗K∗(q̂1 + K̂0)− λq∗K∗(q̂1 + K̂0 + λ̂),

(q̂1 + K̂1)− βλ(q̂2 + K̂1) =λ(1− β)K̂0 + (1− λ)(q̂1 + K̂0)− λλ̂,

λq̂1 − βλq̂2 + K̂1(1− λβ) =λ(1− β)K̂0 + (1− λ)K̂0 − λλ̂,

λ(1− β)K̂1/η + K̂1(1− λβ) =K̂0(λ(1− β) + 1− λ)− λλ̂,

K̂1(1− λβ + λ(1− β)/η) =K̂0(1− βλ)− λλ̂,

which we can write as

K̂1 = K̂0

(
1− βλ

1− λβ + λ(1− β)/η

)
− λ

1− βλ

(
1− βλ

1− λβ + λ(1− β)/η

)
λ̂,

or equivalently

K̂1 = σ

(
K̂0 −

λ

1− βλ
λ̂

)
= σ

(
K̂0 −

Rλ

R− λ
λ̂

)
. (46)

Then equation (39) holds in every period thereafter, K̂s = σK̂s−1 = σs
(

K̂0 − λ
1−βλ λ̂

)
.

From (12) we can write the capital price as q̂0 = r
Rη ∑∞

s=0 βsK̂s. Then we have

q̂0 =
r

Rη
K̂0 +

r
Rη

∞

∑
s=1

βsσs

(
K̂0 −

λ

1− βλ
λ̂

)
,

Rη

r
q̂0 =

(
1

1− βσ

)
K̂0 − λ̂

(
βσ

1− βσ

)(
λ

1− βλ

)
.
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Plugging into the budget constraint we have

(1 + η′)K̂0 =

(
1

1− βσ

)
K̂t − λ̂

(
βσ

1− βσ

)(
λ

1− βλ

)
+

η

r
λ̂0,

K̂0

(
(1 + η′)(1− βσ)− 1

)
= λ̂

(
η

r
(1− βσ)−

(
βσ
)( λ

1− βλ

))
,

K̂0

(
η′(1− β)

)
= λ̂

(
η

r
(1− βσ)−

(
βσλ

1− βλ

))
,

K̂0

(
η′(1− β)

)
= λ̂

(
η′λ

R− λ
(1− βσ)−

(
σλ

R− λ

))
,

K̂0

(
η′(1− β)

)
= λ̂

(
η′λ(1− βσ)− λσ

R− λ

)
,

K̂0 = λ̂

(
η′λ(1− βσ)− λσ

η′(1− β)(R− λ)

)
,

K̂0 = λλ̂

(
1− βσ− σ/η′

(1− β)(R− λ)

)
,

K̂0 = λλ̂

(
R− σ− Rσ/η′

r(R− λ)

)
,

K̂0 = λ̂

(
σλ

R− λ

)
.

Note that this implies that

K̂1 = σ

(
σλ

R− λ
λ̂− Rλ

R− λ
λ̂

)
=

σλ

R− λ
(σ− R) λ̂ < 0,

where the inequality follows because σ < 1 < R. Thus, we see a boom-bust in capital

and thus in output.
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Plugging into the capital equation above we have

Rη

r
q̂0 =

(
1

1− βσ

)
λ̂

(
σλ

R− λ

)
− λ̂

(
βσ

1− βσ

)(
λ

1− βλ

)
,

= λ̂

(
1

1− βσ

)(
σλ

R− λ
− βσ

(
Rλ

R− λ

))
,

= λλ̂

(
1

1− βσ

)(
σ

R− λ
− σ

R− λ

)
= 0,

=⇒ q̂0 = 0.

Financial Shocks and News Now suppose that the financial shock occurs in period

t = N and agents learn of the shock at t = 0. First, linearizing the budget constraints

with news implies.

K̂s =


σsK̂0 0 < s < N

σsK̂0 +
σδẑ
R−δ s = N

σsK̂0 + σs−N δẑ
R−δ (σ− R) s > N

Therefore we are able to calculate q̂0

q̂0 =
r

Rη

∞

∑
s=0

R−sK̂s,

q̂0 =
r

Rη

(
∞

∑
s=0

R−sσsK̂0 +
∞

∑
s=N

R−sσs−N+1 δẑ
R− δ

−
∞

∑
s=N+1

R−sσs−N δRẑ
R− δ

)
,

q̂0 =
r

Rη

∞

∑
s=0

R−sσsK̂0.

Plugging in the budget constraint (42) at t = 0 we have

K̂0

(
δ

η
+

R− δ

r

)
r

δR
=

r
Rη

∞

∑
s=0

R−sσsK̂0,

K̂0

(
1 +

η(R− δ)

δr

)
=

K̂0

1− σ
R

=⇒ K̂0 = 0.
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For a shock occurring at time t = N, then for s < N, K̂s = 0, and

K̂N =
σδẑ

R− δ
> 0, K̂N+1 =

σδẑ
R− δ

(σ− R) < 0, K̂N+s =
σsδẑ
R− δ

(σ− R) < 0. (47)

For s ≤ N, q̂s = 0, and for s > N, q̂s < 0.

D Equilibrium with Changing Interest Rates

In our baseline model we consider linear utility so that the interest rate is constant. In

this section we show that so long as a positive increase in demand for capital raises the

capital price, meaning that the interest rate doesn’t change by too much, then considering

endogenous changes in interest rates is a quantitative question, not a qualitative concern.

Our qualitative results go through so long as asset prices rise in response to demand.

Proposition 10. Suppose that when experts increase their demand for capital, the user cost and

the asset price increase. Then in a model with endogenous interest rates, a news shock next period

leads to boom-bust dynamics in output and asset prices, as in the baseline model.

Let Rt be the real interest rate and let R be the steady-state rate, which is still pinned

down by preferences in steady state because consumption is constant and so risk aver-

sion doesn’t change the steady-state rate. From the asset pricing equation, we have

q̂t =
r
R

ût +
1
R
(
q̂t+1 − R̂t

)
=

r
R

ût −
1
R

R̂t +
1
R

q̂t+1.

Note that when K̂t > 0 then ût > 0. Now suppose a demand for capital K̂t > 0 raises

the interest rate, i.e., R̂t = εK̂t for some ε. So long as the interest rate does not increase

by too much, then the asset price will rise at t.

The user cost is more complicated now because G′ = utRt and so in the absence of

the shock we have

1
η

K̂t = ût + R̂t =⇒ ût =

(
1
η
− ε

)
K̂t =

(
1− εη

η

)
K̂t.

Now consider what happens when non-experts hold less capital and experts hold more.
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Because experts hold more capital, by assumption the interest rate increases. The higher

interest rate makes future output less valuable, and so the user cost increases by less

than would otherwise. Put differently, non-experts’ marginal product has gone way up,

but that does not increase the user cost by as much as before because the higher interest

rate discounts future output. So long as ε is not so large, an increase in demand for

capital by experts will increase the user cost. This means that the evolution of capital

converges at a rate of ς = 1
1+ 1−εη

η

, not γ = 1
1+ 1

η

with ς > γ.

In this case, when ût =
1−εη

η K̂t we can write the asset price equation as

q̂t =
r
R

1− εη

η
K̂t −

1
R

εK̂t +
1
R

q̂t+1,

=

(
r
R

1− εη

η
− 1

R
ε

)
K̂t +

1
R

q̂t+1,

=
r
R

(
1− εη

η
− ε

r

)
K̂t +

1
R

q̂t+1,

and using û1 = 1−εη
η K̂1 + ẑ we have

q̂1 =
r
R

(
1− εη

η
K̂1 + ẑ

)
− 1

R
εK̂t +

1
R

q̂2,

=
r
R

(
1− εη

η
− ε

r

)
K̂1 +

r
R

ẑ +
1
R

q̂2,

Note that this means we can write the asset price from period t > 1 forward as

q̂t =
r
R

(
1− εη

η
− ε

r

) ∞

∑
s=0

βsK̂s,

and

q̂0 =
r
R

(
1− εη

η
− ε

r

) ∞

∑
s=0

βsK̂s + β
r
R

ẑ,
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where
(

1−εη
η − ε

r

)
replaced 1

η in the original formula. Note that we can write

q̂0 =
r
R

(
1− εη

η
− ε

r

) ∞

∑
s=0

βsςs (K̂0 − ẑ
)
+

r
R

(
1− εη

η
− ε

r

)
ẑ + β

r
R

ẑ,

R
r

q̂0 =

(
1− εη

η
− ε

r

)(
1

1− βς

) (
K̂0 − ẑ

)
+ ẑ

(
β +

1− εη

η
− ε

r

)
,

R
r

q̂0 =

(
1− εη

η
− ε

r

)(
1

1− βς

)
K̂0 − ẑ

((
1− εη

η
− ε

r

)
1

1− βς
− β− 1− εη

η
+

ε

r

)
.

Let C =
(

1−εη
η − ε

r

)
. Then we have

R
r

q̂0 = C

(
1

1− βς

)
K̂0 − ẑ

(
C

1
1− βς

− β− C

)
,

= C

(
1

1− βς

)
K̂0 − ẑ

(
βςC

1− βς
− β

)
,

= C

(
1

1− βς

)
K̂0 + ẑβ

(
1− ςC

1− βς

)
.

The budget constraint at t = 0 is

K̂0 = ς
R
r

q̂0,

and hence

K̂0 =ςC

(
1

1− βς

)
K̂0 + ẑβς

(
1− ςC

1− βς

)
,

K̂0

(
1− ςC

1− βς

)
=ẑβς

(
1− ςC

1− βς

)
,

K̂0 =ẑβς,

which is the the same value we get in equilibrium when the interest rate is constant with

ς replacing γ. Note also from the budget constraint that the asset price is therefore

q̂0 = rβ2ẑ,
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which is the same as we get in the baseline model.

Thus, since the dynamics of K̂t are the same with ς replacing γ, we get all the same

dynamics going forward. What is important is that ς ≤ 1 so that the boom is followed

by a bust, and this condition holds so long as the user cost increases at t = 0.

The assumption that 1
η −

ε
r > 0 is only required so that asset prices behave as desired

in the following periods. On the assumption that any demand for capital would increase

asset prices—including the then this is merely a quantitative change to the equation. We

still get K̂0 > 0 and since the dynamics of K̂t are the same (the expert budget constraint

does not depend independently on Rt once the user cost is defined), we get all the same

dynamics going forward. The reason that endogenous changes in interest rates don’t

affect the initial equilibrium (up to the change in the elasticity) is because the present

value of changes in capital is zero, and thus the present value of changes in the interest

rate is zero.
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